Mouhssine Koussoup

EXEMPLES	de transformations quasi-s	TATIQUES POUR UN GAZ PARFAIT	
Diagramme $P-V$	ISOTHERME	ISOCHORE	
	Isotherme	1	
	-W	P	
Caractéristique de la	V_{r} V_{r} $T = cste$	V = cste	
transformation		The second of the second	
1 ^{er} principe	Q = -W	$\Delta U = Q$	
Travail	$W = -nRT \ln \left(\frac{V_f}{V_i} \right)$	0	
Autres relations	PV = cste	$Q = nC_{\nu,\text{mol}} \Delta T \text{ (pour } C_{\nu,\text{mol}} = \text{cste.)}$	
Diagramme P–V	ISOBARE Isobare	ADIABATIQUE Adiabatique V V V V	
Caractéristique de la transformation	P = cste EXOSUP.COM	Q = 0	
1 ^{er} principe	$Q = \Delta U - W$	$\Delta U = W$	
Travail	$W = -P\left(V_f - V_i\right)$	$W = \frac{\left(P_f V_f - P_i V_j\right)}{\left(k - 1\right)}$	
Autres relations	$Q = nC_{e,mol} \Delta T \text{ (pour } C_{e,mol} = \text{cste})$	$PV^{\gamma} = \text{cste}$ $TV^{\gamma-1} = \text{cste}$ $T^{\gamma}P^{1-\gamma} = \text{cste}$	

PAR MOUHSSINE KOUSSOUR GROUPS/COURSUNIVE

site web: www.fsbenmsk.com

JLE PREMIER PRINCIPE DE LA THERMODYNAMIQUE: BILAN Le 1er principe

⇒ Pour une transformation finie :

 $\Delta U = W + Q$

Pour une transformation infinitésimale:

 $dU = \delta W + \delta Q$

Expression du travail

- \Rightarrow cas général : $W = -\int_{V}^{V} P_{ext} dV$
- \Rightarrow Si transformation quasi-statique: $W = -\int_{v}^{v} P dV$

Une nouvelle fonction d'état : l'enthalpie H

- $\Rightarrow H = U + PV$
- \Rightarrow Pour une transformation monobare d'un système fermé $\Delta H = Q$

Détente de Joule-Gay Lussac

- ⇒ Conservation de U
- ⇒ Pour un GP : T_i = T_i (détente isotherme si détente quasi-statique)

Première loi de Joule

Détente de Joule-Kelvin

- ⇒ Conservation de H pour l'unité de masse de fluide transvasé
- ⇒ Pour un GP, détente monotherme

Deuxième loi de Joule

Capacités thermiques

$$\Rightarrow C_v = \left(\frac{\partial U}{\partial T}\right)_v \text{ et } C_P = \left(\frac{\partial H}{\partial T}\right)_P$$

 C_{ν} et C_{ρ} sont accessibles de façon expérimentale

	GPM	GP	Phase condensée
U	$U = \frac{3}{2} nRT$	$dU = C_{_{V}} dT$	$dU \approx C_v(T)dT$
v	$C_v = \frac{3}{2}nR$	$C_{\nu} > \frac{3}{2}nR$	C, ≈ C, = C
Н	$H = \frac{5}{2} nRT$	$dH = C_{\rho} dT$	$dH \approx C_{\rho}(T)dT$
P	$C_p = \frac{5}{2}nR$	$C_{\rho} > \frac{5}{2} nR$	$C_{\nu} \approx C_{\rho} = C$
p - C _V	nR	nR	≈ 0
$r = \frac{C_p}{C_v}$	5 3	$\gamma = \gamma(\tau)$	γ≈1