ALL ABOUT THE TELEPHONE AND PHONOGRAPH
HOW TO MAKE AND USE THEM

LONDON: WARD, LOCK, AND CO.
OPIATES, NARCOTICS, and SQUILLS are too often invoked to give relief in COUGHS, COLDS, and all PULMONARY DISEASES. Instead of such fallacious remedies—which yield momentary relief at the expense of enfeebling the digestive organs, thus increasing that debility which lies at the root of the malady—modern science points to CROSBY'S BALSAMIC COUGH ELIXIR as the true remedy.

DR. ROOKE'S TESTIMONIAL:

Dr. Rooke, Scarborough, author of the "Anti-Lancet," says:

"I have repeatedly observed how very rapidly and invariably it subdued Cough, Pain, and Irritation of the Chest in cases of Pulmonary Con- sumption; and I can, with the greatest confidence, recommend it as a most valuable adjunct to an otherwise strengthening treatment for this disease."

This medicine, which is free from opium and squills, not only allays the local irritation, but improves digestion and strengthens the constitution. Hence it is used with the most signal success in

- ASTHMA
- BRONCHITIS
- CONSUMPTION
- CONSUMPTIVE NIGHT SWEATS
- INFuenza
- QUIRSY
- AND ALL AFFECTIONS OF THE THROAT AND CHEST.

Sold in Bottles, at 1s. 6d., 4s. 6d., and 11s. each, by all respectable Chemists; and wholesale by F.A. MES M. CROSBY, Chemist, Scarborough.

Invalids should read Crosby's Prize Treatise on "DISEASES OF THE LUNGS & AIR-VESELS," a copy of which can be had GRATIS of all Chemists.
THE VOICE BY WIRE AND POST-CARD.

ALL ABOUT

THE

TELEPHONE

AND

PHONOGRAPH.

CONTAINING

DESCRIPTION OF BELL'S AND DOLBEAR'S TELEPHONES AND EDISON'S PHONOGRAPH.

HISTORY OF THE DISCOVERY.

DETAILS OF CONSTRUCTION AND INTERESTING EXPERIMENTS.

LONDON:

WARD, LOCK AND CO., WARWICK HOUSE, DORSET BUILDINGS, SALISBURY SQUARE, E.C.
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electro-Magnetism, and its Application to Telegraphy</td>
<td>11</td>
</tr>
<tr>
<td>Transmission of Sound</td>
<td>25</td>
</tr>
<tr>
<td>Discovery of the Telephone (Illustrated)</td>
<td>33</td>
</tr>
<tr>
<td>Construction of Professor Bell’s Telephone (Illustrated)</td>
<td>53</td>
</tr>
<tr>
<td>Dolbear’s Telephone</td>
<td>59</td>
</tr>
<tr>
<td>Directions for making a Telephone on Dolbear’s principle (Illustrated)</td>
<td>62</td>
</tr>
<tr>
<td>Professor Barrett’s Cheap Telephone</td>
<td>65</td>
</tr>
<tr>
<td>Power of the Telephone</td>
<td>66</td>
</tr>
<tr>
<td>Interesting Experiments before the Queen at Osborne House</td>
<td>72</td>
</tr>
<tr>
<td>Parliamentary Debate Reported by the Telephone</td>
<td>74</td>
</tr>
<tr>
<td>Remarkable Experiments by Professor Bell</td>
<td>75</td>
</tr>
<tr>
<td>“Tapping” the Telegraph Wires</td>
<td>77</td>
</tr>
<tr>
<td>The Phonograph—Sending the Voice by Post</td>
<td>87</td>
</tr>
<tr>
<td>Uses of the Telephone and Phonograph</td>
<td>96</td>
</tr>
</tbody>
</table>
ALL ABOUT THE
TELEPHONE & PHONOGRAPh.

THE Telephone, an instrument by which sound can be conveyed to, it would appear, an unlimited distance—by which conversation can be carried on between persons separated by many miles of sea and land—is unquestionably one of the most marvellous of modern adaptations of scientific knowledge to practical use. The discovery and successful working of the electric telegraph has familiarised us with achievements of science which fifty years ago would have been considered miraculous, and a bare intimation of the possibility of which might, two or three centuries previously, have led the unfortunately ingenious speculator to the stake as a wizard. We can, and daily do, transmit messages to and fro between almost every part of the habitable globe
messages which are not only read off by skilled operators as easily as the pages of a printed book, but are printed by the telegraph itself; and to that really amazing command of the forces of nature we now add the power of transmitting, by the Telephone, the tones of the human voice, distinct articulations, perfectly pronounced words, and musical sounds, to any distance to which the necessary wires may be extended; and, by the most recent adaptation of the instrument, the Phonograph, a message of any length can be spoken on to a plate of metal, that plate sent by post to any part of the world, and the message absolutely re-spoken in the very voice of the sender.

So marvel follows marvel! Voice by Telegraph is followed by voice by Post-card, and the New Year heralds the Future with a new wonder. As Tennyson has it, in the "Two Voices," (which we may now, perhaps, interpret as the natural and the telephonic voices)—

"All the years invent,
Each month is various to present
The world some new development."

In the following pages we narrate the various steps by which these wonderful results have been attained, and describe, in a popular manner, the principles of physical science on which the construction of these wonderful instruments is founded. A full description of the mechanism is also given, so that persons
possessed of mechanical ingenuity may construct for themselves apparatus sufficiently powerful to produce very remarkable results.

An account of some recent experiments of great interest, and suggestions as to further application of these wonderful inventions, are appended.

ELECTRO-MAGNETISM, AND ITS APPLICATION TO TELEGRAPHY.

An acquaintance with the leading principles of the science of electro-magnetism is absolutely necessary before any clear idea of the working of the Telephone can be obtained. The power of the "loadstone," as it is popularly designated, to attract iron and lift a mass equal to many times its own weight, has been known from remote antiquity; and it has also been known that the attractive power may be imparted by contact to iron itself, so producing what is known as an artificial magnet. Another property of iron so magnetised has long been known, although the principle has only been explained in recent times, that a bar or needle of iron so mag-
netised has two poles, one of which will, if the magnet is freely suspended, turn to the north, and that the two ends (or poles) of the magnet are alike in their power of attracting soft iron, but differing in their action on the poles of another magnet—like poles repelling, and unlike poles attracting each other.

The loadstone, or natural magnet, is now known to be one of the ores of iron, the magnetite of mineralogists. The iron is chemically combined with oxygen, and forms 72.5 per cent. of its weight. There is another ore of iron, known as hematite, which contains 70 per cent. of iron; but the difference of two and a half per cent. of iron in the ore is enough to make the difference between a magnetically inert substance, and one which may be able to lift a mass of iron equal to many times its own weight.

Sir Isaac Newton is said to have worn in a finger-ring a small loadstone weighing three grains, which would lift seven hundred and fifty grains, which is equal to two hundred and fifty times its own weight. The most powerful magnet now known is owned by M. Obelliane of Paris. It can lift forty times its own weight. Large pieces, however, do not support proportionally greater weights, seldom more than one or two times their own weight.

There are in many places in the world immense beds of magnetic iron-ore. The celebrated iron-mines of Sweden consist of it, and in Lapland there are several large mountains of it; and it is also found
in the Adirondack region in the state of New York, and in Chester County, Pennsylvania. It must not be inferred, that, because the mineral is called magnetite, all specimens possess the property called magnetism. The large masses seldom manifest any such force, any more than ordinary pieces of iron or steel manifest it; yet any of it will be attracted by a magnet in the same way as iron will be. The most powerful native magnets are found in Siberia, and in the Hartz, a range of mountains in Northern Germany.

In 1820, Professor Oersted of Copenhagen discovered that if a properly balanced magnetic needle was placed immediately under and parallel to a wire along which a current of voltaic electricity was passing, that end of the needle which was situated next to the negative side of the battery immediately moved to the west, while if the needle were placed parallel to and over the wire, the same pole moved to the east. This discovery and the result of other experiments, led to the identification of magnetism with electricity, which had long been suspected, and an almost boundless field of research was opened. The investigation of the subject was taken up with characteristic ardour and perseverance by Faraday in England, Professor Ampère of Paris, and Schweyzer of Germany; and a consideration of the influence exerted by electrical currents on magnets naturally led to the conclusion that the
neutral condition of bodies susceptible of magnetism would be disturbed by an electrical current, and this conclusion was quickly verified by experiments. When an electric current was passed at right angles to a piece of iron or steel, the latter acquired magnetic polarity, either temporary or permanent, the direction of the current determining the position of the poles, and the effect was prodigiously increased by causing the current to circulate a number of times round the bar, which then acquired extraordinary magnetic power.

In 1837, Mr. Sturgeon of Woolwich, discovered that if a copper wire were wound around a piece of soft iron, and a current of electricity sent through the wire, the soft iron would become a magnet, but would retain its magnetism no longer than while the current of electricity was passing through the coil. The magnetism developed in this way was called electro-magnetism, and the iron so wound was called an electro-magnet. The first electro-magnet was made by winding bare wire upon the soft iron. This method will not produce very strong magnets.

Professor Henry of Princetown, New Jersey, afterwards insulated the wire by covering it with silk, and was able by this means to produce very powerful magnets. On a soft iron bar of fifty-nine pounds weight he used twenty-six coils of wire, thirteen on each leg, all joined to a common conductor by their opposite ends, and having an aggregate length of
728 feet. This apparatus was found able to sustain a weight of 2,500 pounds. This electro-magnet is now owned by Yale College, Newhaven, Connecticut, United States.

The power of electro-magnets, constructed on this principle, is enormous. Mr. Joule, the eminent natural philosopher, of Salford, has constructed small electro-magnets which support masses 3,500 times heavier than themselves; and magnets of colossal power have since been produced by Mr. Wilde of Manchester, and M. Gramme of Paris. Electro-magnets are immeasurably superior in strength to natural magnets or steel bars magnetised by contact with natural magnets. The electro-magnet generally consists of a round bar of soft iron, bent into the horse-shoe form, with an insulated wire (that is, wire covered with silk) coiled round its extremities. When a current passes through the coil, the soft iron becomes instantly magnetic; and when the current is stopped, the power disappears as quickly as it came. A very familiar and popular scientific experiment is the sudden attraction of iron filings or small iron nails by a magnet of this description. The fragments of iron leap as it were to the magnet, and hang from it, held together by the strong magnetic force. In this position they remain so long as the electric current is passing through the wires; but the moment it is stopped, they fall off into a heap, entirely deprived of the magnetic sympathy which an instant before made
them cluster together with such irrepresrible force. It is easy to see how this power of alternately imparting and cutting off attractive power may be made available in producing motion. For instance, the teeth of a wheel may be attracted in succession, and so a rotary motion produced; and it is evident that as the electric force may be transmitted through wires for any distance, a wheel or other apparatus at the extreme end of a line may be made to act sympathetically with a similar apparatus at the home end, by means of these transmitted "jerks," or alternate currents or stoppages. This is the key to the whole mystery of telegraphic communication. Of course there are manifold methods of applying the power to the production of intelligible signs and other means of communication. It is not necessary for our purpose to describe these methods; but a clear understanding of the principle is essential.

Some of our readers may not be aware that the earth itself is a huge electro-magnet, with currents of electricity perpetually circulating around it, having its poles, or the neighbourhood of the poles (or ends) at the axis of rotation—the familiar North Pole and South Pole of our geographical lesson-book. Refer back to what we have said respecting the action of one magnet on another, and it will be easy to understand why one end of the magnetised steel of the mariner's compass always points to the north.

The next point to consider is the mode of pro-
and Phonograph.

Producing the electric current, which, by its circulation around the soft iron, forms the magnet. This electricity is produced by the action of the electric battery originally devised by the Italian philosopher, Alessandro Volta, in 1799, and sometimes known as the voltaic pile or the galvanic battery, it having originated in the investigations made by Volta into the nature of the electric action on the nervous system of animals noticed by Luigi Galvani, the great physiologist of Bologna. The original form of the battery, as devised by Volta, and modified but little during thirty years, consisted of a cell to contain a fluid, which was usually dilute sulphuric acid in which two plates of different metals were immersed: the metals used were generally plates of zinc and copper, or zinc and silver. Such plates, when first placed in the liquid, will give a very good current of electricity, but it will not last long. The reason of this is easy to understand. Whenever a current of electricity is generated by chemical action of a liquid upon two different metals, there is always some decomposition of the liquid, and this decomposition takes place upon the plates themselves; and the liberated gases adhere to the plates, and prevent further contact with the acid; at the same time, the gases themselves act upon the plates, and generate a current of electricity in the opposite direction. This will of course interfere with the first current; and very soon the battery is useless until the plates have
been withdrawn from the liquid. This physico-
chemical process that takes place in such a battery
is called the polarisation of the plates.

We will endeavour to describe (which is much
easier than to explain, for the exact relation of
chemical and electrical action is one of the problems
which exercises the ablest minds in science) the
action going on in a battery cell of the kind men-
tioned. If a plate of platinum and a plate of zinc
are placed opposite each other in a vessel containing
hydrochloric acid, and connected by a wire, a hiss-
ing sound will be heard coming from the cell, and
bubbles of gas will be seen to rise from the platinum
plate. These bubbles prove upon analysis to be
bubbles of hydrogen. At the same time the zinc will
begin to dissolve, forming what proves by analysis
to be the chloride of zinc; and simultaneously
a current of electricity travels through the wire
from the platinum to the zinc. The quantity of elec-
tricity that is thus generated is strictly proportionate
to the quantity of hydrogen liberated, which is also
proportionate to the weight of zinc dissolved; and
this, in turn, is proportionate to the surface of the
metals exposed to the action of the acid.

There are many variations of the original of the
battery, copper and zinc being the metals generally
submitted to the action of nitric and sulphuric acids.
Daniell’s, Grove’s, Bunsen’s and Smee’s, are the bat-
teries most generally used. From the battery the
and Phonograph.

electric force is transmitted to the wires traversing the iron bar, and the magnet is produced.

Although electricity will in this manner induce magnetism, yet magnetism differs from electricity. Professor Dolbear says—"We can come to but one conclusion, that both electricity and magnetism are but forms of motion; electricity being a form of motion in ordinary matter, for it cannot be made to pass through a vacuum, while magnetism must be a form of motion induced in the ether, for it is as effective in a vacuum as out of it; electricity always needing some material conductor, magnetism needing no more than do radiant heat and light."

Magneto-electricity, discovered by Faraday in 1831, is the converse of electro-magnetism; that is, the action of a magnet induces an electric current through a wire; the opposite effect being that of electro-magnetism, by which the passage of an electric current through a surrounding coil changes a piece of soft iron into a magnet, as described above. It is magneto-electricity that is now the active power of the Telephone, as we shall see when describing the instrument in detail.

The discovery of electro-magnetism, revealing the possibility of sending intermitting currents of electric force through wires of great length, naturally attracted the attention of scientific investigators to the subject of the transmission of signals, or of communication by means of the alphabet. Previous
attempts with the aid of frictional electricity had been made, and electric shocks produced at the distance of a mile or two by Wollaston in 1747; by Franklin, in the following year; at Geneva and in some parts of France; and in 1794, Reizen of Germany employed the electric spark for telegraphing, employing a very elaborate apparatus. He made use of interrupted slips of tin foil, so arranged that the form of the letter or figure was exhibited by the sparks he transmitted. He employed 36 wires from one station to another, each one of them communicating with one of the letters or figures, and each one connected with a return wire, thus making 72 in all. Three years afterwards, Don Francisco Salvá and Senor Betancourt constructed a similar telegraph between Madrid and Aranjuez, a distance of about 26 miles, and shortly afterwards proposed to substitute the voltaic pile for the frictional electrical machine. In 1816, Mr. Francis Ronalds of Hammersmith established telegraphic communication between two stations eight miles apart, connecting two clocks, one at each station, moving exactly together, and each bringing into view one after the other the letters of the alphabet arranged upon a disc which revolved behind a screen, with an opening for one letter. Each clock was provided with two pith balls connected with an electrical machine at the other station; and the divergence called the attention of the operator to the letter then in view. About six years previously
Ampère had pointed out the applicability of electromagnetism to the transmission of telegraphic signs; but his plan included the use of 30 needles and 60 independent wires. Many other experiments, none attaining definite results, were made, one of the most remarkable in the direction of simplicity, being that of Steinheil of Gottengen, in 1837. He employed a single wire twelve miles long, and the signals were produced upon a series of bells of different tones, which soon became intelligible to a cultivated ear; and the same deflections of the needle (caused by the transmitted current of electricity) which produced the sounds were also made to trace with ink lines and dots upon a ribbon of paper moved at a uniform rate. This was a great advance towards the production of a telegraph practically available; but in the meanwhile, careful experiments were being carried on simultaneously in England and the United States which resulted in the establishment of the electric telegraph, now, with some modifications, generally employed. In June, 1837, Professor Wheatstone and Mr. Cooke (the latter of whom had had his attention directed to the subject when a student at Heidelberg) jointly took out a patent in England; and in the following October, Professor Morse, of New York, who had been labouring at the subject for five years, took legal measures to secure a patent in the United States. In England the telegraph was first brought into active operation on the Great
Western Railway, between Paddington and West Drayton about the end of 1838; and in America, Morse's system was made practical use of in May, 1844, between Washington and Baltimore.

That is enough of the history of electric telegraphy for our present purpose; and we will now briefly describe the mode of transmitting messages adopted by the respective inventors, for the purpose of assisting our readers to comprehend the working of the Telephone and Phonograph, of which we shall shortly speak. The Telephone is in fact a vocal telegraph, by which the waves of sound are conveyed from point to point, and the vibrations reproduced, just as the intermittent and varied electric shocks are transmitted and reproduced at the extremity of the wire opposite to that from which the message is dispatched. There is considerable similarity in the means employed, and an understanding of the one will clear the way to a comprehension of the other.

At first Messrs. Wheatstone and Cooke employed five magnetic needles, and either five or six wires, with a peculiar keyboard, on which were arranged the letters of the alphabet. After a time only one needle was employed, different letters being designated by the deflection of the needle to the right or to the left, one or more times, in either or both directions, the swinging of the needle being checked by small pins fixed on the dial, so that the motions were rendered precise and clear. Operators accustomed
to the work do not require the lettered dials for reading the movements of the needle, and some can even read off a message transmitted at the rate of 100 letters a minute. This, however, is a remarkable feat both of transmission and reading; and the ordinary rate at which messages are sent is about 24 words a minute.

The Morse system is very different. At the sending end is a voltaic battery, at the receiving end an electro-magnet, which, when the current passes, attracts an "armature," or piece of soft iron placed at the pole, by which, according to the duration of the current, dots or lines are marked with a steel point upon a moving slip of paper. At the sending end is an apparatus known as "the key," consisting of a small lever with a button at the end, on pressing which two platinum wires are brought into contact, and the shock is transmitted; but when the pressure is removed, a spring lifts the lever, separates the wires, and breaks the circuit. The paper on which the message is to be recorded, is carried between two rollers moved by clockwork. In one of these rollers is a groove, into which the steel point presses the paper. When successive blows are struck on the key at the sending end, closing and opening the circuit quickly, corresponding dots appear on the paper; but, if the key be pressed down for a longer or shorter time, keeping the circuit closed, a continuous line of any desired length may be produced on
the paper. Every letter of the English alphabet and every numeral has a sign; and there are also marks of punctuation. We need not give the entire alphabet, the signs for the first five letters being sufficient to exemplify the system:—

A — , B — - - , C - - - , D — - - , E - , F - — - .

The word "Victoria" thus transmitted would appear on the slip of paper at the receiving end in this fashion:—

- - - - | - - | - - - | - - | - - | - - | - - | - - |

We have inserted dividing lines between the letters for the sake of clearness, but they are not practically used. The skilled operator with the Morse instrument can read off the message as it arrives without looking at the marks on the paper, simply by listening to the "click" which is made every time the circuit is completed or broken, and we are told "practice has taught him to rely on the evidence of his ears with as much confidence as one less accustomed to the work would trust his eyes;" that is, his cultivated ear enables him to estimate so correctly the length of the currents as indicated by the clicks that he knows what letters are being impressed on the paper.
TRANSMISSION OF SOUND.

The sensation of sound is the final effect of a closely considered series of mechanical actions which have their origin in some rapidly vibratory body, whence they are propagated progressively through solid, liquid or gaseous bodies.

"If," says Professor Dolbear, "I strike my pencil upon the table, I hear a snap that appears to the ear to be simultaneous with the stroke: if, however, I see a man upon a somewhat distant hill strike a tree with an axe, the sound does not reach me until some appreciable time has passed; and it is noted, that, the farther away the place where a so-called sound originates, the longer time does it take to reach any listener. Hence sound has in air a certain velocity which has been very accurately measured, and found to be 1,093 feet per second when the temperature of the air is at the freezing point of water. As the temperature increases, the velocity of sound will increase a little more than one foot for every Fahrenheit degree; so that at 60° the velocity is 1,125 feet per second. This is the velocity in air. In water the velocity is about four times greater, in steel sixteen times, in pine-wood about ten times.

"If a person stands at a distance of fifteen or twenty rods from a cannon that is fired, he will first see the
flash, then the cloud of smoke that rushes from the cannon's mouth, then the ground will be felt to tremble, and lastly the sound will reach his ear at the same time that a strong puff of air will be felt. This puff of air is the sound wave itself, travelling at the rate of eleven hundred feet or more per second. At the instant of explosion of the gunpowder, the air in front of the cannon is very much compressed; and this compression at once begins to move outwards in every direction, so as to be a kind of a spherical shell of air constantly increasing in diameter; and, whenever it reaches an ear, the sound is perceived. Whenever such a sound-wave strikes upon a solid surface, as upon a cliff or a building, it is turned back, and the reflected wave may be heard; in which case we call it an echo. When a cannon is fired, we generally hear the sound repeated, so that it apparently lasts for a second or more; but when, as in the first case, we hear the sound of a pencil struck upon the table, but a single short report is noticed, and this, as may be supposed, consists of a single wave of condensed air.

"Imagine a tuning-fork that is made to vibrate. The two prongs beat the air in opposite directions at the same time. The vibration of one of the prongs is from \(a\) to \(b\) (Fig. 1). Look at the physical condition of the air in front of one of these prongs. As the latter strikes outwards, the air in front of it will be driven outwards, condensed; and, on account of the elasticity
of the air, the condensation will at once start to travel outwards in every direction—a wave of denser air; but directly the prong recedes, beating the air back in the contrary direction, which will obviously rarefy the air on the first side (Fig. 2). The disturbance we call rarefaction moves in air with the same velocity as a condensation. We must therefore remember, that just behind the wave of condensation is the wave of rarefaction, both travelling with the same velocity, and therefore always maintaining the same relative position to each other. Now, the fork vibrates a great many times in a second, and will consequently generate as many of these waves, all of them constituted alike, and having the same length; by length meaning the sum of the thicknesses of the condensa-
tion and the rarefaction. Suppose a fork to make one hundred vibrations per second: at the end of the second, the wave generated by the vibration at the beginning of the second would have travelled, say, eleven hundred feet; and evenly distributed between the fork and the outer limit, would be ranged the intermediate waves occupying the whole distance: that is to say, in eleven hundred feet there would be one hundred sound-waves, each of them evidently being eleven feet long. If the fork made eleven hundred vibrations per second, each of these waves would be one foot long; for sound-waves of all lengths travel in air with the same rapidity."

Sir Charles Wheatstone has shown by a beautiful experiment that even the most complex sounds may be transmitted as readily as through the air. In the lower room of a house, or in a lightly closed box lined with felt, he placed a musical-box. On the top of the musical-box rested the end of a long, light wooden rod, which reached to one of the rooms above, the rod being insulated from the floor of the room by india-rubber. No sound was perceived in the upper room until a violin, guitar, or other instrument with a sounding-board was placed on the top of the rod, when the sounds of the musical-box filled the upper room and appeared to eminate from the musical instrument on the rod. A very striking adaptation of this experiment has been exhibited at some of those institutions where scientific instruction is combined with
amusement. On a platform was placed several musical instruments, but no players. Suddenly it appeared as if invisible performers were uniting in a concert, each instrument seemingly taking its part. The explanation was, that other instruments in a lower part of the building were played on, the vibrations of sound being conveyed by thin wooden rods to the corresponding instruments above.

About the year 1848, an exhibition of this kind took place before the Queen, at the Polytechnic Institution, Regent Street, Mr. Wheatstone bringing, by means of wooden rods, the music of a band from a distant part of the building into the room where her Majesty was. An amusing anecdote regarding this invention is related by Mr. Chappell. An eminent foreign performer on the violoncello came to England, bringing a letter of introduction to Wheatstone. He left the letter at the house, and appointed to call at a particular hour on the following day. Wheatstone was at home to receive him, and, thinking to surprise and amuse his visitor, hung a violoncello on the wall of the passage, having a rod behind it to connect it with another, which was to be played from within when he entered the hall. The guest turned in every direction to find whence the sounds came, and, at last, approaching the violoncello hanging on the wall, and, having satisfied himself that they proceeded from it, although there was neither hand nor bow to play upon it, he rushed out
of the house in affright, and would never enter it again! Wheatstone also made the invention a source of domestic amusement, by fitting up a lyre in a small boudoir, connecting it by a rod through the ceiling with a pianoforte in the room above, and his daughter was to amuse friends by playing unseen on the piano by means of the apparatus below.

We have heard many wonderful accounts of guitars and banjos giving out lively music in locked cabinets, when it seemed impossible that any human hands could touch the strings; and we are tempted to ask if the slender wooden legs of the cabinet had any connection with guitars and banjos in a floor beneath. Visitors to spiritualistic "mediums" are often astonished by hearing tunes played on a piano at which no visible performer is seated; and a closed and locked instrument will suddenly become amazingly musical. Wheatstone's rod arrangement is no secret, and the real performer may, perhaps, be a very tangible piece of humanity, comfortably seated in a room below. A familiar instance of the transmission of sounds through a solid medium is afforded by the fact that if a person places his ear against one end of a large log of timber he can distinctly hear even the scratch of a pin at the other end, so sensitive to vibrations of sound is even the solid oak or elm.

Eton boys have long been acquainted with a means of communication between the dormitories, using a tightly-stretched string, which, to a certain extent,
answers the same purpose as a wooden rod. At each end of the string is tied a ring, about two inches in diameter, covered with bladder taken from empty marmalade pots. The string is stretched between two dormitories, and the youthful experimentalist speaks with the bladder close to his mouth, the string conveying the vibrations to the other bladder, where they are distinctly heard. A toy telephone constructed in this manner has been sold in the London toy-shops. Speaking machines have been exhibited, in which words apparently proceeded from the mouth of a figure, and there was a display of apparatus, worked by keys, somewhat resembling those of a piano. The question suggests itself, was the apparatus shown a "dummy," and was there really a speaker in another room, the rather indistinct and muffled tones of the "speaking machine" being due to the stretched membrane?

The air transmits sounds, of course, or we should never hear them; and it is well ascertained that sonorous vibrations will pass through water.

"Pitch," that quality of sound by which we distinguish the position of sounds on the musical scale, depends upon the number of the vibrations in a given time. The greater the number, the "higher" the note; the less, the "lower". The smallest number of vibrations which produce a continued sound is 40 in a second; but the average human ear can recognize sounds caused by about 40,000 vibrations in a second,
consequently of great acuteness. The musical note C, "below the line" of the treble clef, has theoretically 256 vibrations to the second; but our musical readers are well aware that "the pitch" is a subject on which very eminent musicians are not quite agreed, and has been the cause of much discussion, in which we shall not take part, as we are not writing a musical treatise; and for the same reason we need not dwell upon the exact relations or the number of vibrations which musical sounds bear to each other. But one peculiarity of sound must be noticed because of its especial reference to the possibility of recognising particular voices transmitted to a distance, and that peculiarity is "timbre," a word which has been much used in connection with discussions on this subject. In French the word means "bell," and in reference to the voice, means the "ring;" that special character by which we distinguish between two or more sounds having the same pitch. The ear at once distinguishes a difference between the same musical note produced by a flute, a violin, a clarinet, or a pianoforte; or between the voices of two singers, singing with the most careful accuracy the same music.
DISCOVERY OF THE TELEPHONE.

It being established by the investigations we have briefly described, and the results so triumphantly attained, that electric currents can be transmitted through wires to a practically unlimited distance without loss of power; that by electro-magnetism the currents may be made intermittent, so as to produce intelligible signals; and it being also established that sonorous vibrations can be transmitted through solid, liquid, or gaseous mediums, it became a question of great interest to scientific inquirers whether, by the aid of electro-magnetism, not only the vibrations of sound might be communicated, but also vibrations of pitch, and even articulate utterances.

While Wheatstone was engaged in perfecting his telegraphic invention, he had his attention seriously directed to the subject of transmission of sounds by wire, and knowing already the transmissibility of delicate musical sounds through rods (see page 28), it was easy for him to convey the tick of a clock through wire to his electro-magnetic clock. This he described as "an instrument which shall indicate the time and beat dead seconds audibly." This clock was exhibited to the Royal Society on the 26th November, 1840, and Mr. William Chappell, the well-known writer on
musical subjects, who was present on the occasion, says in a letter to the *Athenæum*:

"Having seen a huge coil of wire in the well of the staircase, on entering Somerset House that evening, I went up to the library and tea-room of the Royal Society to learn what had been going on. Wheatstone pointed out to me a clock-face in the room. It was perfectly transparent and had hands; but every one could see that there were no works within it, yet the hands moved, and the clock-face ticked most audibly. He took me out on the staircase to hear the perfect simultaneity and the equal force of the tick with that of the clock in the hall below. It was the sound of that clock which had been conveyed through a coil of wire of some miles in length to the clock-face in the library on high. The sound above and the sound below were in perfect unison, and of absolute equality in force as well as of pitch. As this was the first electric clock, so Wheatstone was the first to employ the electric wire for the transmission of sounds, as well as to transmit them by rods, without the use of electricity."

In fact, Professor Wheatstone constructed a Telephone, which could reproduce the tick of a clock at the end of several miles of wire; but that was a simple result, although it went a long way towards establishing the principle.

About 1852, Professor Reis of Friedrichsdorf (near Hombourg, in Germany), made some experi-
ments, but without producing very satisfactory results; but, in 1860, succeeded in constructing an apparatus, the distinctive feature of which was a stretched membrane vibrating to a particular pitch or note. A contact piece was adjusted near the membrane, and a series of rapid contacts sent a series of clicks along an electric wire to an electro-magnetic receiver at the other end; but only one note or musical sound could be conveyed.

The first published notice of Reis's telephone appeared in a daily paper of Frankfort-on-the-Maine. Referring to Reis's instrument, Professor Barrett said, in a lecture recently delivered:—"The first Telephone was of a most primitive nature. The originating instrument was a bung of a beer barrel hollowed out, and the cone formed in this way was closed with the skin of a German sausage, which did service as a membrane. To this was fixed with a drop of sealing-wax a little strip of platinum, representing the hammer of the ear, and which 'made' or 'broke' the electric circuit, precisely as in the instruments of a later date. The receiving instrument was a knitting needle surrounded with a coil of wire and placed on a violin to serve as a sounding-board."

To Reis, then, is due the first conception of causing the voice to vibrate a membrane and through it to "make" and "break" an electric circuit. He thus caused the vocal "shiver" to be converted into an electric "shiver." Professor Barrett illustrated the
vocal "shiver" in a way that any one can reproduce. A wooden box had a sheet of writing paper stretched across the top, and into one side of the box was placed a piece of metal tube. Coloured sand was sprinkled on the paper, and then the voice and various instruments were one after another sounded into the tube. The patterns into which the sand was thrown were seen to change with the different notes sounded. No simpler method, no method more easily reproduced at home has probably ever been shown before. Reis's electric "shiver" at the further end, responsive to the vocal "shiver," was due to a principle that the knitting needle was made a magnet by each passage of electricity, and the magnetisation and demagnetisation of a bar of iron is accompanied by a sound. It is true that this instrument makes only a succession of clicking sounds, but here was the germ of the use of the vibrating membrane for receiving sound and converting the motion into electric "shocks" that could be transmitted to a distance.

About two years afterwards, Reis succeeded so far that, by his apparatus, a song could be heard and the tune recognised, but the words could not be distinguished.

Nearly five years ago, Mr. Thomas A. Edison, a telegraphic engineer of Manlowe Park, New Jersey, United States—to whose labours we shall presently refer in connexion with an even more marvellous application of telephonic science—attempted to con-
and Phonograph. 37

struct a Telephone, but we believe with but imperfect success. He was familiar with the fact that signals are recorded by sending an electric current through prepared paper saturated with a chemical agent, which changes its colour wherever the current touches it, the paper being moved on equally, and a pen or stylus, resting upon it, conveying the impulse received from the electric wire; and he tried to devise an arrangement for producing sound as well as discolouration, something for the ear to hear as well as something else for the eye to see.

More recently, Mr. Elisha Gray of Chicago, considerably improved on the instrument of Reis, as will be shown further on in a notice of the results obtained; and Mr. Paul Lacour of Copenhagen, also arranged an apparatus which transmitted finer sounds than were afforded by the instrument of Mr. Gray.

But the greatest success has been achieved by Professor Alexander Graham Bell, son of Mr. Alexander Melville Bell, a well-known teacher of elocution, inventor of the system of “visible speech.” Father and son have long been engaged in perfecting the method of teaching the dumb to speak, with the most amazing results; and the younger teacher, his mind dwelling on the possibility of obtaining more perfect telephonic transmission than Reis and the others had been successful in producing, and not undervaluing but bravely encountering the difficul-
ties of the task, said: "If I can make a deaf mute talk, so can I make iron talk."

We are indebted to the report of a lecture delivered by Professor Bell, before the Society of Telegraphic Engineers, on the 31st of October, 1877, for an account of his earlier efforts in the direction to which his thoughts were turned:—

"Many of those present may recollect the invention by my father of a means of representing, in a wonderfully accurate manner, the positions of the vocal organs in forming sounds. Together we carried on quite a number of experiments, seeking to discover the correct mechanism of English and foreign elements of speech, and I remember especially an investigation in which we were engaged concerning the musical relations of vowel sounds. When vowel sounds are whispered, each vowel seems to possess a particular pitch of its own, and by whispering certain vowels in succession a musical scale can be distinctly perceived. Our aim was to determine the natural pitch of each vowel; but unexpected difficulties made their appearance, for many of the vowels seemed to possess a double pitch—one due, probably, to the resonance of the air in the mouth, and the other to the resonance of the air contained in the cavity behind the tongue, comprehending the pharynx and larynx. I hit upon an expedient for determining the pitch which at that time I thought to be original with myself. It consisted in vibrating a tuning-fork in
and Phonograph. 39

front of the mouth while the positions of the vocal organs for the various vowel sounds were silently taken. It was found that each vowel position caused the reinforcement of some particular fork or forks. I wrote an account of these researches to Mr. Alex. J. Ellis of London. In reply he informed me that the experiments related had already been performed by Helmholtz, and in a much more perfect manner than I had done. Indeed, he said that Helmholtz had not only analysed the vowel sounds into their constituent musical elements, but had actually performed the synthesis of them. He had succeeded in producing, artificially, certain of the vowel sounds by causing tuning-forks of different pitch to vibrate simultaneously by means of an electric current.

While reflecting upon the possibilities of the production of sound by electrical means, it struck me that the principle of vibrating a tuning-fork by the intermittent attraction of an electro-magnet might be applied to the electrical production of music. I imagined to myself a series of tuning-forks of different pitches, arranged to vibrate automatically in the manner shown by Helmholtz, each fork interrupting at every vibration a voltaic current; and the thought occurred, 'Why should not the depression of a key like that of the piano direct the interrupted current from any one of these forks, through a telegraph wire, to a series of electro-magnets operating the strings of a piano or other musical instrument, in which case a
person might play the tuning-fork piano in one place and the music be audible from the electro-magnetic piano in a distant city? The more I reflected upon this arrangement the more feasible did it seem to me; indeed, I saw no reason why the depression of a number of keys at the tuning-fork end of the circuit should not be followed by the audible production of a full chord from the piano in the distant city, each tuning-fork affecting at the receiving end that string of the piano with which it was in unison. At this time the interest which I felt in electricity led me to study the various systems of telegraphy in use in this country and in America. I was much struck with the simplicity of the Morse alphabet, and with the fact that it could be read by sound. Instead of having the dots and dashes recorded upon paper, the operators were in the habit of observing the duration of the click of the instruments, and in this way were enabled to distinguish by ear the various signals. It struck me that in a similar manner the duration of a musical note might be made to represent the dot or dash of the telegraph code, so that a person might operate one of the keys of the tuning-fork piano referred to above, and the duration of the sound proceeding from the corresponding string of the distant piano be observed by an operator stationed there. It seemed to me that in this way a number of distinct telegraph messages might be sent simultaneously from the tuning-fork piano to the other end of the
circuit, by operators each manipulating a different key of the instrument. These messages would be read by operators stationed at the distant piano, each receiving operator listening for signals of a certain definite pitch, and ignoring all others. In this way could be accomplished the simultaneous transmission of a number of telegraphic messages along a single wire, the number being limited only by the delicacy of the listener's ear. The idea of increasing the carrying power of the telegraph wire in this way took complete possession of my mind, and it was this practical end that I had in view when I commenced my researches in electric telephony."

In the course of the investigation, it occurred to him that if he could vibrate a piece of iron—to give to that piece of iron not the vibration of a musical tone, but the resultant vibration of a vowel sound—an undulatory current would be produced directly, not indirectly, which would correspond to the motion of the air in the production of a sound. The difficulty was, however, how to vibrate a piece of iron in the way required. Mr. Bell had been examining and experimenting with an instrument known as the Phonautograph, which produced a diagram of curves in accordance with the vowel sound. It consisted of a cone into which a person spoke, which condensed the air from the voice; and there was at the small end of the cone a stretched membrane, which vibrated when a sound was produced, and, in the
course of its vibration, it controlled the movement of a long style of wood, about 1 ft. in length, and these curves were drawn by the style upon a surface of smoked glass, which was dragged rapidly along. Mr. Bell says (in a lecture delivered before the Society of Arts on the 28th November, 1877): "I attempted to construct a phonautograph, modelled as nearly as possible on the mechanism of the human ear, but upon going to a friend in Boston, Dr. Clarence J. Blake, an aurist, he suggested the novel idea of using the human ear itself as a phonautograph, and this apparatus we constructed together. It is a human ear. The interior mechanism is exposed, and to a part of it is attached a long style of hay. Upon moistening the membrane and the little bones with a mixture of glycerine and water, the mobility of the parts was restored, and on speaking into the external artificial ear, a vibration was observed, and after many experiments we were able to obtain tracings of the vibration on a sheet of smoked glass drawn rapidly along. The apparatus gave me the clue to the present form of Telephone. What I wanted was an apparatus that should be able to move a piece of iron, in the way that a particle of air is moved by the voice. It struck me in the course of these experiments that there was great disproportion between the tissue of the membranes and the bones that were moved by the membranes, and that if such a thin and delicate membrane could vibrate a mass of bone, so disproportionate in
size and weight, perhaps a membrane might be able to vibrate a piece of iron in the way required. I therefore constructed a second form of articulating Telephone, founded on the first apparatus by which I was, at the time of these experiments, producing undulatory electricity for the purpose of producing musical tones. It was attached to one pole of an electro-magnet, and magnetised by means of a battery current. A current being passed through the coils of the magnet this piece of iron became magnetic, and a rod attached to one pole would of course become magnetic also, as if attached to a permanent magnet, so that, on vibrating this rod in any way whatever, the battery current was put in operation, and the corresponding rod at the other end thrown into vibration. I, therefore, took this apparatus, and instead of clamping the rod firmly, it was attached loosely to one extremity of the magnet, and the other end was attached to a stretched membrane of goldbeater's skin; and the same at the other end. The idea was that on speaking to this membrane, it would be thrown into vibration, and cause the vibration of the piece of iron, that in fact the iron would follow the motion of the membrane, that is, of the particles of air; it would, therefore, induce an undulatory current of electricity the intensity of which would vary with the motion, and at the other end the intensity of the magnetic attraction would vary in a similar way; so that the piece of iron at the other end, being attracted and
repelled in a varying manner, would be thrown into vibration, copying the motion of the first, and it in turn would cause the motion of a second stretched membrane, which would move the air in the neighbourhood, and we should thus have a sound produced. The idea was, that not only would the two pieces of iron vibrate together, but the form of the vibration would be the same, so that on speaking in the neighbourhood of one membrane we should have a fac-simile of the sound produced at the other end. The apparatus was constructed, but the results were rather unsatisfactory. My friend, Mr. Thomas Watson, who assisted me, however, asserted that he could hear a very faint sound proceed from the second membrane when I spoke in the neighbourhood of the first. Encouraged by this fact I varied the apparatus in a number of ways, and eventually produced three distinct forms of apparatus, which were exhibited at the Centennial Exhibition. I came to the conclusion that this piece of iron was probably rather too heavy to be set in vibration by the membrane, and I therefore made it as light as possible; in fact, I took a piece of steel spring, only about the size of the pole of the electro-magnet itself, and glued it to the centre of the membrane. Upon constructing two of these instruments, there was no mistake at all that articulate speech was produced; but it was of a very imperfect nature. When a person spoke or sung into one of these instruments, you could distinctly
hear the tones of the speaker's voice at the other end, and could recognise that there was articulation there, and when you knew the sentence that was uttered, you could recognise the articulation, and it seemed strange that you could not understand what it was at first. The vowel sounds seemed to be copied very fairly, but the consonant sounds were entirely alike.”

Nothing discouraged by the imperfections which attended his first attempts, Professor Bell persevered, and in 1875 was enabled to send a musical message through a two-mile wire. He secured his invention by patent, and in the autumn of 1876 gave his first public exhibition of the system.

We will now return to the other experimenters in the same field. The great Centennial Exhibition was held at Philadelphia in the autumn of 1876, and of all the wonders of ingenuity and art there collected, none excited greater attention than the telephone. Mr. Bell’s was exhibited, and so also was the apparatus invented by Professor Reis, already mentioned. We append a brief description, with illustrations of the latter instrument. No. 1 is the apparatus of transmission, and No. 2 the receiving instrument. At the station where a tune is played, a large tube, connected with a box, receives the vibrations of air produced by the musical instrument. The box serves to receive and reinforce the sound. On its upper side is stretched a membrane, which
vibrates in unison with the concussions it receives. The problem is to transform the vibrations of this membrane into musical cadences by means of an electric current. The current is introduced and conducted by a copper leaf to a platinum disc. Every time the membrane swells up, the platinum pointer is
touched, and the connection established; it is disconnected when the membrane returns to repose. Here we have the making and breaking of a current by means of the vibration or waves of sound. The box is connected by means of telegraph-wire with the receiving instrument, which may be many miles distant. This latter is composed of an iron rod, about the size of an ordinary knitting-needle, wound around with insulated copper wire, one end of which is connected with the air-line, and the other with the earth, to complete the circuit. Not only is the time indicated, but also the note; the two elements which compose the melody—the heights of the sound and the interval between the notes—are automatically reproduced without the possibility of error. To complete the description of the instrument, it is necessary to add that in fig. 1 are a key and an electro-magnet, the usual arrangement of the Morse system to establish correspondence between the two stations. There must be a receiving instrument not indicated in the illustration. This extra apparatus can be dispensed with, as the telephone itself can be made to serve for purposes of communication. To give the telephone its highest value, it is necessary to study the form to be given to the box, and also to add to the agreeable sound of the receiving instrument by introducing several iron rods in the bobbin. The instrument of M. Reis differed essentially from the Telephone of Mr. Graham Bell, and is by no means so
perfect, but it is interesting as having been one of the pioneers in this branch of research.

The instrument sent by Mr. Bell to the same Centennial Exhibition was described in the official report signed by Sir William Thomson and others:

"Mr. Alexander Graham Bell exhibits an apparatus by which he has achieved a result of transcendent scientific interest—a transmission of spoken words by electric currents through a telegraph wire. To obtain this result, Mr. Bell perceived that he must produce a variation of strength of current as nearly as may be a exact proportion to the velocity of a particle of air moved by the sound; and he invented a method of doing so—a piece of iron attached to a membrane, and then moved to and fro in the neighbourhood of an electro-magnet—which proved perfectly successful. The battery and wire of this electro-magnet are in circuit with the telegraph wire and the wire of another electro-magnet at the receiving station. The second electro-magnet has a solid bar of iron for core, which is connected at one end by a thick disc of iron to an iron tube surrounding the coil and bar. The free circular end of the tube constitutes one pole of the electro-magnet, and the adjacent free end of the bar core the other. A thin, circular iron disc held pressed against the end of the tube by the electro-magnetic attraction, and free to vibrate through a very small space without touching the central pole, constitutes the sounder by which the
electric effect is reconverted into sound. With my ear pressed against the disc, I heard it speak distinctly several sentences. I need scarcely say I was astonished and delighted. So were others, including some judges of our group, who witnessed the experiments, and verified with their own ears the electric transmission of speech. This, perhaps the greatest marvel hitherto achieved by the electric telegraph, has been obtained by appliances of quite a homespun and rudimentary character. With somewhat more advanced plans and more powerful apparatus, we may confidently expect that Mr. Bell will give us the means of making voice and spoken words audible through the electric wire to an ear hundreds of miles distant.”

The illustrations on pp. 50 and 51 show the Telephone exhibited by Mr. Bell, and described in the above report.

Mr. Elisha Gray appears to have achieved considerable success in the transmission of musical sounds. By the aid of his apparatus a performer played at Philadelphia to an audience at New York, 90 miles distant. The apparatus may be called a telephonic piano; it transmits the sounds of that instrument, but of no other. Public performances of this kind were given in the early months of 1877. On one evening the instrument was played at Chicago, and the music heard at Milwaukie, 87 miles distant. “The Last Rose of Summer,”
BELL'S FIRST TELEPHONE—THE TRANSMITTER.

The coil \(a \) is an electro-magnet, the soft iron rod in centre projects beyond the coil towards diaphragm, leaving a small space between them; \(b \), diaphragm of gold-beaters' skin stretched over and fastened to the curled rim of movable brass collar, \(c \). At the centre of diaphragm, on the side removed from the electro-magnet, is placed a bit of clock-spring about the size of thumb-nail; \(d \), collar and short fixed tube of brass extending to \(e \), which is the position of diaphragm; this latter can thus be tightened or loosened by means of the screws, \(f \); \(g \), mouthpiece to collect the volume of sound; \(h \), battery; \(i \), wire from battery to coil; \(k \), telegraph wire from coil through binding screw, \(l \); \(m \), pillar holding magnet in place by means of smaller iron rod, which is fixed to one end of magnet.
"Yankee Doodle," "The Sweet By-and-by," and "Home, Sweet Home," are named as the tunes thus played. On a second occasion the apparatus triumphed over a distance of no less than 284 miles, from Chicago to Detroit.

A writer in *Chambers's Journal*, describing the results, tells us that "two instruments are required, a transmitter and a receiver. There is a keyboard of two octaves (available, therefore, only for simple melodies), a tuning bar, an electro-magnet, and an electric circuit. The play on the keys with the...
fingers produces vibrations, thuds, molecular movements, in rhythmical succession; these are transmitted by the electric wire to the receiving apparatus at the other end. This receiving apparatus is a large sounding-box, on which is mounted an electromagnet. The box intensifies the sounds by its sonorousness, through the medium of the slight touches which the magnetised iron gives to the box at every expansion or elongation which the electromagnetism gives it. Delicate experiments have shewn that there is a minute difference in the length of a bar of iron when magnetised and demagnetised, and Mr. Gray appears to have taken advantage of this property in causing his magnetised bar to give a succession of taps to the resonant box."

In July, 1877, Mr. Cromwell Varley, the well-known electrician, exhibited an apparatus at the Queen’s Theatre, Long Acre; and by means of a wire connected with the Canterbury Hall in the Westminster Bridge Road, tunes were transmitted from the one building to the other. A prominent feature of this Telephone was a series of tuning-forks, one for each note.
CONSTRUCTION OF PROFESSOR BELL'S TELEPHONE.

The instrument now used by Professor Bell, and which is by far the most successful of any yet produced, does not differ materially in principle from that shown at the Centennial Exhibition, and already described. But some modifications have been made in the direction of simplicity. An attentive reader of the extracts we have given from the lectures of Mr. Bell, and our brief summary of the leading principles of electro-magnetism and transmission of sound, will have no difficulty in understanding the construction and making of the telephone now in general use. But it may be convenient to present in a general manner the leading principles of the apparatus, before entering on a detailed description; and we avail ourselves of an excellent epitome of the subject given in a recent article in Chambers's Journal:

"We must first comprehend the mode in which the sonorous transmission through the wire is brought about; for this it is which really constitutes the principle of the telephone. Ordinary telegraphic coils of insulated wire are applied to the poles of a powerful compound permanent magnet; and in front of these is a thin vibrating diaphragm or membrane,
with a metallic contact-piece cemented to it. A mouth-piece or trumpet mouth, fitted to collect and intensify waves of sound, is placed near the other surface of the diaphragm. It is known that the motion of steel or iron in front of the poles of a magnet creates a disturbance of electricity in coils surrounding those poles; and the duration of this current will coincide with the vibratory motion of the steel or iron. When, therefore, the human voice (or any other suitable sound) impinges through the tube against the diaphragm, the diaphragm itself begins to vibrate, and the contact-piece awakens (so to speak) electrical action in the coils of wire surrounding the poles of the magnet; not a current, but a series of undulations, something like those produced by the voice in the air around us. The undulations in the coil produce a current in the ordinary telegraph wire with which it is placed in connection. A similar apparatus at the other end is hereby set in action, but in reverse order; that is, the wire affects another coil, the coil another diaphragm, and the diaphragm another tube, in which the sounds are reproduced in audible vibrations.”

In the earlier experiments by Professor Bell, he employed galvanic batteries to produce the current, but afterwards dispensed with them, and employed permanent magnets, the electric current being induced not by electro-magnetism, but by magneto-electricity, described at page 19.
The popular impression has been, concerning the telephone, that the sound was in some way conveyed over the wire, such is very far from being the case. The fact is, it is a beautiful example of the convertibility of forces from one form to another. There is first the initial vibratory mechanical motion of the air, which is imparted to the membrane carrying the iron. This motion is converted into electricity in the coil of wire surrounding the electro-magnet, and at the receiving end is first effective as magnetism, which is again converted into vibratory motion of the iron armature, which motion is imparted to the air, and so becomes again a sound-wave in air like the original one.

The accompanying diagrams may be referred to in further explanation of the construction of the instrument:—

It will be seen that Bell's Telephone consists of a cylindrical magnet, about five inches long and three-eighths of an inch in diameter, encircled at one extremity by a short bobbin of wood or ebonite, on which is wound a quantity of very fine insulated copper wire. The magnet and coil are contained in a wooden cylindrical case, and the two ends of the coil are soldered to thicker pieces of copper wire, which traverse the wooden envelope from one end to the other, and terminate in the binding screws at its extremity. Immediately in front of the magnet is a thin circular iron plate, which is kept in its place by
being jammed between the main portion of the wooden case and a wooden cap, in which is the opening for the mouth-piece (in the case of the receiving instrument, to be applied to the ear like an ear
trumpet). These two parts are screwed together, and the latter is cut away at the centre, so as to expose a portion of the iron plate about half an inch in diameter. The best thickness of the iron plate is
that of the ferrotype plate used by photographers, which is almost the thinnest procurable, and thin tinplate is also available. The plate is cut into a disc, about two inches in diameter (in the instruments in ordinary use, but may be much larger), and is placed as near as possible to the extremity of the steel magnet without touching it; the effect of this position being that, while the induced magnetism of the plate is considerable, it is susceptible to very rapid changes, owing to the freedom with which the plate can vibrate.

The dimensions given are those of the instrument generally used, and are found to be convenient; but
a good working telephone may be made sufficiently small to be carried—of course excepting the connecting wires—in the waistcoat pocket, a magnet only an inch and a half long, producing good results.

There is no difference between the transmitting and receiving telephone, each instrument serving for both purposes. But it will be found convenient to have two on the circuit at each station, so as to avoid the inconvenience of shifting the instrument backwards and forwards between the ear and the mouth. The person taking part in the telephonic conversation can then hold one permanently to his ear, while he talks with the other, as shown in the illustration on the preceding page.

The illustration on the next page represents a long-distance telephone for office use, being also a transmitter as well as receiver.

DOLBEAR'S TELEPHONE.

Professor A. E. Dolbear, of Tuft's College, Massachusetts, United States, claims to have been the first inventor of the speaking Telephone in which magneto-electric currents are utilised for the transmission of
BELL'S LONG-DISTANCE TELEPHONE.

a, compound magnet; on to each pole of this is clamped a short round piece of bar iron, over which is a bobbin of coil wire, b; c, d, small space; d, diaphragm of thin sheet soft iron; e, speaking tube; f, telegraph wire; g, line to the earth. The magnet is held in its place by short cross pieces of wood. The whole is contained in mahogany case to fit in recess of wall, or elsewhere.
speech, and other kinds of sounds. We express no opinion as to the justice of his claim, but quote his description of a telephone which he has constructed:

"My first speaking-telephone consisted of a magnet made out of half-inch round steel bent into a U form, having the poles about two inches apart. Over these were slipped two bobbins taken from an old telegraph register, and were already fitted to a half-inch core. These bobbins, two inches and a half long, were wound with cotton-covered copper wire, No. 23, each bobbin containing about 150 feet. This magnet, with the bobbins slipped upon its poles, was made fast to a post two or three inches high. The steel was made as strongly magnetic as was possible, and would hold up three or four times its own weight. In front of the poles, a sheet of thin steel, one-fiftieth of an inch thick, was made fast to an upright board having a hole cut through it three and a half inches in diameter. The plate was screwed tightly to this board, so as to cover the hole; and the middle of the hole was at the same height as the two poles of the magnet. The wires from the two bobbins were connected, as if to make an electro-magnet; while the two free terminals were to be connected with the line-wires. Of course there were two of these instruments, both alike; and talking and singing were reproduced with these."
DIRECTIONS FOR MAKING A TELEPHONE ON DOLBEAR'S PRINCIPLE.

Professor Dolbear says:—"The following directions will enable any one to construct a speaking-telephone with which good results may be obtained. The specifications will be for only one instrument; though of course two instruments made alike will be necessary for any purposes of speaking or other signals. Procure three common horseshoe magnets about six inches long, all of the same size. They should be strong enough to hold up several times their own weight each. Next, have turned out of good hard wood—such as maple or box-wood—two spools not over half an inch long and an inch and a half broad, the sides cut square both inside and out, a hole the third of an inch in diameter is to be made through the spool. Into this hole is to be fitted a short rod of soft iron about an inch long, which should be a little rounded at the outer end. The bobbins may be wound with as much insulated copper wire as they will hold. The wire may be from the one-fortieth to the one-fiftieth of an inch in diameter, as is most convenient to obtain, the latter size being preferable. The resistance of such bobbins will probably be from two to three ohms each. The soft iron core must project backwards far enough to
be clamped between the two outer magnets, while the inner one is drawn back. When the bobbins are in their places, and are clamped between the upper and lower magnets, they will stand as shown in Fig. 1,

![Dolbear's Telephone (Fig. 1)](image)

where the view is from above; the magnets being buttoned down to the block they rest on (see Fig. 2), which at the same time holds the soft iron rods with the bobbins upon them. The wires on these coils must be connected in the same way they would be in order to make opposite poles of their outer ends, if a current of electricity were to be sent through the coils. An upright board B (Fig. 2) six or seven inches square, having a round hole four inches in diameter cut out from the middle of it, must be fixed near the end of the baseboard; and over this hole is to be screwed tightly a piece of thin sheet iron or steel; it
may be from the one-twentieth to the one-fiftieth of an inch in thickness. It does not seem to make much difference about the thickness of this plate. I have generally got the best results from a plate one-fiftieth of an inch thick. The upright board carrying this plate must be very rigid, otherwise the plate will be kept tight to the magnets all the time; and one of the conditions of success in working is, that this plate shall be as close as possible to the magnet ends, but not to touch: therefore fix the board tight, and adjust the magnets by means of the button shown on top of them in the perspective figure.

The sounds to be transmitted, of whatever sort they may be, are to be made on the side P, Fig. 1; and likewise, when the instrument is used as a receiver, the ear is to be applied at the same place. A tube
about two inches in diameter may be made fast to the front of the board, in a line with the centre of the plate; this will aid somewhat in hearing. When two or three persons are to sing, it will be best to have each one supplied with a tube to sing through; one end of the tube to be placed close to the front of the plate. The sound of musical instruments, such as the flute and the cornet, will be reproduced much louder if the front of such instrument be allowed to rest upon the rim of the hole in the board, just in front of the plate."

PROFESSOR BARRETT'S CHEAP TELEPHONE.

At a lecture recently delivered, Professor Barrett showed "how to make a telephone at the cost of a few pence which is sold for £25." A tooth-powder wooden box has a hole cut through lid and bottom, a disc of tinned iron is fastened between them, a small straight bar magnet is put through a silk or small cotton reel and fixed near the disc, and round the reel is wound some wires. This is the "originator,"
and the "receiver" is similar. Some trials will be needed to adjust the exact distances, but the wire may extend from "originator" to "receiver" for some hundred yards.

POWER OF THE TELEPHONE.

Telegraphists test the carrying power of a current by employing a means of "resistance" equivalent to a telegraph line of stated length. This artificial resistance is nicely graduated, and the unit of resistance is termed an "ohm," from the name of Ohm, the German electrician who suggested the method. One hundred ohms is about equivalent to seven miles. Professor Bell says that he experienced no difficulty in his laboratory experiments, in converse through a resistance of 60,000 ohms (more than 4,200 miles). The greatest length of real telegraph line through which he has attempted to converse has been about 250 miles. On one occasion the current passed through the bodies of sixteen persons who stood hand in hand; and very distinct sounds have been transmitted when a considerable mass of iron has been employed, and
and Phonograph.

further, when the iron was glued to a piece of wood an inch thick, and then interposed between it and the magnet, the action still continued, and a voice was heard at the distance of three miles. There is a marked difference in the manner in which letters are reproduced by the Telephone. Vowels are more acceptable than consonants, and as a rule, those letters are best transmitted which involve opening the mouth widely in the utterance. High sounds appear to be produced more fully than low ones.

Mr. B. N. Warwick, a correspondent of the *English Mechanic*, describes some very interesting experiments he has made with telephones, testing the power of transmitting sound. He says:

"The first magnets were about the size usually now employed, \(\frac{1}{2} \) in. in diameter, and about eight times as long. Ferrotype plates were first used, but these are by no means necessary. Removing these plates, I tried necessarily a number of substances; first—thin tin-plate answered perfectly, both for sending and receiving. Sheet iron, about 1-50 in. thick, does not act so well, but all that is said is perfectly understood. While experimenting with these the plates were merely laid on the top of the instrument without being fixed in any way: the topmost wood part with the conical cavity was also discarded, as both transmitting and receiving went on equally well without it. This part of the instrument seems superfluous, as the sound, when the bare plate is
pressed flat against the ear, seems louder from the greater proximity. Now, iron plates do not appear to be absolutely necessary, although iron acts better than anything; yet diamagnetic substances act very well. Desiring my assistant, who was some distance off and beyond reach by direct sound in any way, to continue counting for some time, I removed the iron plate and laid across the instrument a broad bar of iron \(\frac{1}{4} \) in. thick. Placing my ear against it I heard every number distinctly, but somewhat enfeebled. A square piece of brass 3-8 in. was placed in position; the sound, although distinct, was not so strong as the last. Next, thick pieces of lead, zinc, and steel were tried. The steel acted about the same as the thick iron, and as in the other cases every word spoken was feebly but distinctly heard. Now, some of these are diamagnetic metals, and yet the action goes on. Non-metallic substances were now tried—first a piece of window glass; this acted very well indeed. With wood—a piece of matchbox—the action was feeble, but on placing other pieces of gradually increasing thickness the sound gradually increased, and with a rough piece of wood 1\(\frac{1}{2} \) in. thick the sound was perfectly distinct. I next placed an empty wood-box in position; this acted very well. A square piece of cork \(\frac{1}{2} \) in. thick acted, but rather feebly. A block of Turkey stone 2 in. thick was placed upon the instrument, and with this against the ear the speaker could be followed easily. I now tried
without anything at all intervening, and placed my ear close on the magnet and coil, and now, most curious of all, without any plate to vibrate, I could hear feebly, and by listening attentively I could understand all that was said. This was repeated many times. Mechanical transmission of sound was impossible, as many yards of wire lay coiled upon the ground, and yet, without anything (but air) intervening between my ear and the end of the magnet, I could understand what was said. Now, all these experiments were one way—the sounds were received. The sounds transmitted (or attempted) acted rather differently. A tuning fork, struck and placed on the thin iron plate or on the wood work, was heard clearly; for speech, the thin iron plates acted best. With the other substances, the stone, thick wood, glass, zinc, &c., the sound of the fork was heard by it either resting on them or by holding the vibrating prong over them. These thick substances did not answer for the sound of the voice. All these substances were now put aside, and the vibrating prong held directly over the pole of the magnet. This sound was clearly heard, although nothing intervened but air between the vibrating fork and the end of the magnet. The intensity of the sound was not nearly so great by resting the fork directly on the pole as when the vibrating fork was held over the end of the magnet. I next tried if my voice could be heard with this arrangement.
The result was rather doubtful, but I think some action must have taken place, for the fork was heard by merely vibrating in the vicinity of the pole, and the effect produced by the voice must have differed only in degree, and was too feeble to be heard at the other end. I have repeated and made quite sure of these results, and have succeeded in transmitting sound very distinctly without a plate over the pole, and have in return distinctly heard all that was said by placing my ear against the instrument—also without any plate whatever."

Another correspondent of the English Mechanic supplies some hints which may be of service to amateur construction. He says:—"The numerous failures in making this instrument are due, in all probability, to two causes, (1) imperfect insulation of the coils, (2) imperfect metallic contact of the small or large wires with the connecting or binding screws. In making my Telephone, which is perfectly successful, I followed with the utmost care the directions and drawings given in the Mechanic a few weeks ago. Disappointment, however, awaited me, and every effort to make the instrument speak was unsuccessful until it occurred to me to borrow a medical magneto-electric machine, and place one of the coils in the circuit. The current was perfect through the first coil so tested, but the second refused to act, and on examining it I found that, owing to several kinks, and badly insulated joints in the wire, the
coil was useless. Having substituted another coil the instrument spoke at once. I have found that the cleaner the portion of the wire in contact with the connection, and the clearer the hole in the connection, the more perfect is the articulation. It is a good plan to bare about 2in. of the service wire, and having passed it through the hole in the connection to wind it once or twice round it. In this way sufficient contact is secured. The magnet should be withdrawn a little before the ferrotype plate is put on, as the attraction of the magnet has a tendency to draw the middle of the plate before it is properly gripped round the edges. The wires for my Telephones pass from my dining-room, through the kitchen, round the garden, up the back wall of the house into a second-floor room. I have used covered wire in the house, but outside I have employed common bell-wire, passing it once round iron staples over which I had previously slipped about an inch of small india-rubber tubing which answers perfectly as an insulator.”
INTERESTING EXPERIMENTS.

The Telephone Exhibited to the Queen at Osborne House.

On Monday evening, the 14th of January, 1878, Professor Bell and Colonel Reynolds were presented to the Queen, at Osborne House, Isle of Wight, and exhibited the Telephone, being assisted by Mr. C. Wolleston. Professor Bell explained the mechanism of his invention, and then held telephonic communication with Osborne Cottage, the residence of Sir Thomas Biddulph. The apparatus there was under the management of Mr. F. C. Ormiston, who was the first to address the Royal party. Her Majesty conversed with Sir Thomas and Lady Biddulph, and later Miss Kate Field, who was at Osborne Cottage, sang "Kathleen Mavourneen," for which Her Majesty returned thanks telephonically through the Duke of Connaught. Miss Field afterwards sang Shakespeare’s "Cuckoo Song" and "Comin' thro' the Rye," and delivered the epilogue to As You Like It, all of which were heard distinctly. The applause which followed came through the Telephone. The Princess Beatrice, the Hon. Mrs. Ponsonby, and others conversed with Osborne Cottage, sometimes through a circuit of one, three, and five persons. As the evening wore
on telephonic connection was established between Osborne House and Cowes, Southampton, and London. At Cowes, where Major Webber, of the Royal Engineers, superintended the line, a quartet of tonic-sol-fa singers sang several part songs, which produced an admirable effect, and the Duke of Connaught talked for several minutes with Major Webber. Attention was then turned to Southampton, where Mr. W. H. Preece, of the Post-office, talked as fluently with Professor Bell and Colonel Reynolds as though he were in the next room. A bugle in Southampton sounded the retreat with startling distinctness; and, lastly, came the tones of an organ from London, in charge of Mr. Wilmot. Cheering and laughing in London were heard, the distance being 80 miles. The experiments lasted from half-past nine until nearly midnight. Her Majesty, the Princess Beatrice, the Duke of Connaught, and the entire Royal household evinced the greatest interest. On the following morning, Professor Bell made very successful experiments between Cowes, Osborne House, and Osborne Cottage, at which the Princess Beatrice, the Duke of Connaught, the Duke of Richmond, Lord John Manners, Lord Ripon, Lady Biddulph, Lady Cowell, Sir John Cowell, and others assisted.

The following correspondence has since passed between Sir Thomas Biddulph and Professor Bell:—
OSBORNE, January 16th, 1878.

“My Dear Sir,—I hope you are aware how much gratified and surprised the Queen was at the exhibition of the Telephone here on Monday evening. Her Majesty desires me to express her thanks to you, and the ladies and gentlemen who were associated with you on the occasion. The Queen would like, if there is no reason against it, to purchase the two instruments still here, with the wires attached. Perhaps you will be so kind as to let me know, and when the sum due shall be paid. With many thanks,

I am, my dear Sir,

Very faithfully yours,

Thos. Biddulph.”

To this Professor Bell returned this answer:—

57, West Cromwell Road, Kensington.

January 18th.

“Dear Sir,—I feel highly honoured by the gratification expressed by Her Majesty, and by her desire to possess the Telephones. The instruments at present at Osborne are merely supplied for ordinary commercial purposes, and it will afford me much pleasure to be permitted to offer to the Queen a set of Telephones made expressly for Her Majesty’s use.

Your obedient servant,

Alexander Graham Bell.”

PARLIAMENTARY DEBATE REPORTED.

A portion of the debate in the House of Commons and of the Parliamentary Summary was transmitted by means of the Telephone, through the ordinary telegraphic wires from the gallery of the House of
Commons to the office of the *Daily News*, in Bouverie Street, Fleet Street, and published in that journal on Wednesday, the 23rd of January, 1878.

Messages to the Shah of Persia.

We see it announced that the Persian Ambassador has sent several messages by Telephone to the Shah. The distance between London and Teheran (about 2,500 miles) is, we believe, the greatest distance yet achieved in actual communication.

At the conclusion of Professor Bell's lecture before the Society of Telegraph Engineers, he related the results of some remarkable experiments, results in some instances, quite unanticipated. He said:

"Professor Peirce has observed the most curious sounds produced from a Telephone in connection with a telegraph-wire during the aurora borealis; and I have just heard of a curious phenomenon lately observed by Dr. Channing. In the city of Providence, Rhode Island, there is an overhouse wire about one mile in extent with a Telephone at either end. On one occasion the sound of music and singing was faintly audible in one of the telephones. It seemed as if some one were practising vocal music with a pianoforte accompaniment. The natural supposition was that experiments were being made with the Telephone at the other end of the circuit, but upon in-
quiry this proved not to have been the case. Attention having thus been directed to the phenomenon, a watch was kept upon the instruments, and upon a subsequent occasion the same fact was observed at both ends of the line by Dr. Channing and his friends. It was proved that the sounds continued for about two hours, and usually commenced about the same time. A searching examination of the line disclosed nothing abnormal in its condition, and I am unable to give you any explanation of this curious phenomenon. Dr. Channing has, however, addressed a letter upon the subject to the editor of one of the Providence papers, giving the names of such songs as were recognised, with full details of the observations, in the hope that publicity may lead to the discovery of the performer, and thus afford a solution of the mystery.

"My friend Mr. Frederick A. Gower communicated to me a curious observation made by him regarding the slight earth connection required to establish a circuit for the Telephone, and together we carried on a series of experiments with rather startling results. We took a couple of Telephones and an insulated wire about 100 yards in length into a garden, and were enabled to carry on conversation with the greatest ease when we held in our hands what should have been the earth wire, so that the connection with the ground was formed at either end through our bodies, our feet being clothed with cotton socks and leather boots. The day was fine, and the grass upon which
we stood was seemingly perfectly dry. Upon standing upon a gravel walk the vocal sounds, though much diminished, were still perfectly intelligible, and the same result occurred when standing upon a brick wall one foot in height, but no sound was audible when one of us stood upon a block of freestone.

"One experiment which we made is so interesting that I must speak of it in detail. Mr. Gower made earth connection at his end of the line by standing upon a grass plot, whilst at the other end of the line I stood upon a wooden board. I requested Mr. Gower to sing a continuous musical note, and to my surprise the sound was very distinctly audible from the Telephone in my hand. Upon examining my feet I discovered that a single blade of grass was bent over the edge of the board, and that my foot touched it. The removal of this blade of grass was followed by the cessation of the sound from the Telephone, and I found that the moment I touched with the toe of my boot a blade of grass or the petal of a daisy the sound was again audible.

"I am informed by my friend Mr. Preece that conversation has been successfully carried on through a submarine cable, sixty miles in length, extending from Dartmouth to the Island of Guernsey, by means of hand Telephones."

In February, 1877, a lecture was delivered on the subject of Telephony, by Professor Bell, at Salem, Massachusetts, and was audible word for word at
In order to show that the transmission is equally available in both directions, provided the proper apparatus is at both ends, the lecture from Salem to Boston was followed on the same evening by singing and speech-making from Boston to Salem.

At one of the experimental trials between Boston and Salem, a lady sang "The Last Rose of Summer," and was distinctly heard at the distant station; the sounds had about the same effect as if the listeners were at the rear of a concert-hall, say a hundred feet from the singer. The sounds of laughter and applause were similarly transmitted, with the proper rhythm and key or musical pitch. In instrumental music a violin could be distinguished from a violoncello; a test more delicate than would be supposed by many persons.

On another occasion, Professor Bell stationed himself in the Lyceum at Salem, Mr. T. A. Watson at Boston. An intermittent current, sent through the eighteen miles of telegraphic wire, produced in the telephone a horn-like sound. The Morse alphabet was then transmitted in musical sounds, audible throughout the lecture-hall. Then the sounds of an organ were made to act upon the apparatus, and these in like manner were transmitted; two or three tunes being distinctly heard in succession at Boston. Professor Bell then signalled to Mr. Watson to sing a song; this was done, and the words as well as the tune of the song heard. A speech was then made at
Boston in the simple words: "Ladies and gentlemen, it gives me great pleasure to be able to address you this evening, although I am in Boston and you in Salem." This speech was heard distinctly in the Lyceum at Salem, and was followed by many questions and answers sent to and fro.

A correspondent of the *English Mechanic* says:—

"I have recently gathered a few curious matters in telephony. The engineer of the Submarine Company, at Dover, while experimenting by Bell’s Telephone through one of the channel cables, from England to France, distinctly heard the Morse symbols passing through the other cable. He inquired if they were sending a telegram by the other cable, and the answer was yes—thus showing a kind of duplex telephony. On another occasion, while this gentlemen was speaking into the Telephone at St. Margaret’s Bay, Dover, he could simultaneously hear voices at the French end of the cable. On Christmas Eve four children sang a carol over a Telephone; listeners at the other end of the wire could distinguish the separate voices—the children did not keep time together nicely—which makes it more strange how the diaphragm of the instrument could vibrate for the four voices without causing a confused mass of hum, as might have been supposed. I should like the opinion of some talented readers why the voice of a speaker appears so very distant, as the diaphragm of the receiving instrument is so very close to the ear."
The last sentence of the letter just quoted refers to a remarkable phenomenon which has been observed. A ventriloquial effect is produced, the sound appearing to proceed, not from the mouth of the instrument, but from some other place. The writer of a very interesting article in Chambers's Journal says:—"The voice, whether in speaking or singing, has a weird curious sound in the Telephone. It is in a measure ventriloquial in character; and with the Telephone held an inch or two from the ear, it has the effect as if some one were singing far off in the building, or the sound were coming up from a vaulted cellar or through a massive stone wall. Every syllable, and every turn of melody of such a song as 'My Mother bids me bind my Hair,' sung by a lady at one end, or 'When the Heart of a Man,' sung at the other, could be distinctly heard, but with the effect before noticed, that the voice was muffled or shut in, as if the singer were in a cellar, while it was not always possible to say at once whether the voice was that of a man or a woman."
“TAPPING” THE TELEGRAPH WIRES.

While we are yet only at the beginning of our acquaintance with the capabilities of the Telephone, and scientific men are investigating how it may be employed so as to obtain from it the utmost measure of usefulness, it has been already discovered that, if deftly employed, it can be used as a medium for procuring revelations never intended to be intrusted to its keeping. It is able to steal the secrets of the telegraph. It is sufficient to cause a Telephone wire to run close by a telegraph wire for a comparatively moderate distance, in order to be able to hear through the Telephone the signs given at the other end by the telegraph apparatus. It would seem from this that anyone need only attach the wire of a Telephone to a telegraphic wire in order to “tap” it, and become possessed of all the secrets which are being conveyed along it. There is, however, one indispensable condition for gratifying such curiosity. The operator must possess so educated an ear that he can understand the telegraphic signs upon merely hearing them. Since telegraphic officials alone, and only very few even among them, can be presumed to have such finely-trained hearing, the danger suggested by this discovery does not, as yet, at least, seem to be very great; and besides, the process of tapping by
Telephone could not be carried out if the instrument in use were an A B C, or a single needle, or if the wire were being worked duplex, or with a fast speed Morse, for in these cases the sounds are too rapid or too indefinite to be read by ear. The danger is thus limited to ordinary "sounder" or Morse telegraphs; but these still form the mainstay of every public system. The Morse system of "dots and lines" is explained at page 24.

Professor Bell says, in reference to this subject:

"When a Telephone is placed in circuit with a telegraph line, the Telephone is found seemingly to emit sounds on its own account. The most extraordinary noises are often produced, the causes of which are at present very obscure. One class of sounds are produced by the inductive influence of neighbouring wires and by leakage from them, the signals of the Morse alphabet passing over neighbouring wires being audible in the Telephone, and another class can be traced to earth currents upon the wire, a curious modification of this sound revealing the presence of defective joints in the wire. Professor Blake informs me that he has been able to use the railroad track for conversational purposes in place of a telegraph wire; and he further states that when only one Telephone was connected with the track the sounds of Morse operating were distinctly audible in the Telephone, although the nearest telegraph wires were at least 40 feet distant."
This remarkable result is described with more detail in the clever article in Chambers's Journal, already noticed. The writer, a gentleman of long experience in telegraphic research, says:—"In various recent articles on the Telephone, mention has been made of 'contact' as the cause of disturbance. This word, however, although it has been used by telegraphists, is misleading, and can only be used as an endeavour to express popularly an electric fact. Actual contact of one wire with another would spoil the business altogether. A wire bearing an electric current seems to be for the time surrounded, to an undefined distance, by an electric atmosphere, and all wires coming within this atmosphere have a current in an opposite direction set up in them. This is as near an explanation of the phenomena of induction as the state of telegraph science at present affords. Now the Telephone works with a very delicate magnetic current, and is easily overpowered by the action of a stronger current in any wire near which the Telephone wire may come. To work properly, it requires a silent line. In the place where the observations were made, there are a large number of wires, travelling under the floor, through the test-box, along passages to the battery-room and to a pole on the outside, whence they radiate, or out to a pipe underground, where many gutta-percha covered wires lie side by side. On applying the ear to a Telephone joined into a circuit working in such an office a curious sound is
heard, comparable most nearly to the sound of a pot boiling. But the practised ear could soon separate the boiling into distinct sounds. There was one masterful Morse instrument—probably on the wire lying nearest the one on which we were joined up—whose peremptory 'click, cli-i-i-ck, click,' representing 'dot, dash, dot' on the printed slip we read from, could be heard over all. Then there was the rapid whir of a Wheatstone fast-speed transmitter, sending dots and dashes at express speed by mechanical means; the sharp well-pronounced rattle in sounds of equal length of a needle instrument; and most curious of all, the 'rrrrr-op, rr-op, rrrrrrrrrrrrr-op, rrrrr-op, rr-op' of the A B C, the deadliest foe to the Telephone in its endeavours to gain admission into the family of telegraph instruments. It must not be understood that the sounds of those various instruments are actually heard in the Telephone. What happens is, that the currents stealing along the Telephone wire by induction produce vibrations in the diaphragm of that instrument, the little metal membrane working on the magnet in ready response to every current set up in the latter. When it is remembered that the principle of the Telephone is that the sound-caused vibrations in the filmy diaphragm at one end create similar but magnetically-caused vibrations in the diaphragm at the other end, and so reproduce the sound, it will be obvious why the rapid roll of the A B C currents, or the swift
sending of the fast-speed transmitter, when brought by induction into the Telephone wire, cause disturbances in the sound vibrations, and thereby cripple the instrument. One instrument of either kind named would have a certain effect, but one Morse or single needle would not have any greatly prejudicial effect. But a number of Morses or needles going together, such as were heard in our experiments, would combine to be nearly as bad as one A B C or fast-speed Morse.”

The following extract from a letter which recently appeared in the Daily News, shows that inductive action, when the parallel circuits are not numerous, does not seriously interfere with the transmission of speech:

“The experiments with the Telephone were made by me upon the cable lying between Dover and Calais, which is 21\(\frac{3}{4}\) miles long. Several gentlemen and ladies were present, and conversed in French and English with a second party in France for upwards of two hours. There was not the slightest failure during the whole time. I was only using one wire. The other three (it is a four-wire cable) were working directly with London and Paris, Calais, and Lille. I could distinctly hear the signals by the three wires on the Telephone, and at times when but one of the three wires was working, I could decipher the Morse signals, and read a message that was passing for Glasgow to Paris. Yet when
all the three wires were working simultaneously, the Telephone sounds were easily and clearly distinguishable above the click of the signals. I happened to know several of the party in France, and was able to recognise their voices. They also recognised mine, and told us immediately a lady spoke that it was a female voice. When making some trials upon a line three-fourths of a mile long, I arranged a musical-box (the tones of which are very feeble) under the receiver of an air-pump, the top of the receiver being open. Upon this opening I placed the Telephone, and every note came out at the second end so clearly as to enable those who were present to name the tune that was played. Unfortunately we had not the same means in France, but simply held the mouth of the Telephone close to the box, and some of the notes were audible, but not so perfect as on the short line. One young lady burst out laughing the moment she placed the instrument to her ear, and exclaimed, 'Some one is whistling "Tommy, make room for your Uncle!"' As my correspondent and myself had had a little practice, we were, without the slightest difficulty, able to talk in our usual manner, without any strain upon the voice, or any unnatural lengthening of syllables. We were not able to hear breathing, in consequence of the continued pecking caused by induction from other wires'
THE PHONOGRAPH—SENDING THE VOICE BY POST.

The announcement of the possibility of transmitting the voice by telegraph wires, has been followed by a new and even more wonderful announcement. Mr. Edison of New Jersey (an eminent telegraphic engineer, whose investigations we have noticed at page 36) has devised a method by which the voice can actually be imprinted on a thin slip of metal, and sent to any part by post, the tones being reproducible on another phonograph; so that parents, husbands and wives, children and sweethearts, may speak to those near and dear to them; and cooler business men may send messages viva voce to places as yet unreached by telegraph, and be secure from the possibility of the message being heard by any person other than the one to whom it is sent. This amazing invention will be best described by quoting the account of it given in the Times of Tuesday, the 15th of January, 1878:—

"Not many weeks have passed since we were startled by the announcement that we could converse audibly with each other, although hundreds of miles apart, by means of so many miles of wire with a little electro magnet at each end, yet we are on the point of realising some of the many advantages promised
by the telephone. Another wonder is now promised us—an invention, purely mechanical in its nature, by means of which words spoken by the human voice can be, so to speak, stored up and reproduced at will over and over again, hundreds, it may be thousands, of times. What will be thought of a piece of mechanism by means of which a message of any length can be spoken on to a plate of metal, that plate sent by post to any part of the world, and the message absolutely respoken in the very voice of the sender, purely by mechanical agency? What, too, shall be said of a mere machine by means of which the old familiar voice of one who is no longer with us on earth can be heard speaking to us in the very tones and measure to which our ears were once accustomed?

"The highly ingenious apparatus by which this wonder is effected is the invention of Mr. Thomas A. Edison, of Manlowe Park, New Jersey, U.S.A., the electrical adviser to the Western Union Telegraph Company. Mr. Edison is well known in the States, and scarcely less so in England, for several valuable practical applications of electrical science, among Mr. Edison's other inventions being an exceedingly well-arranged Telephone. To the present invention Mr. Edison has given the name of the Phonograph, and it depends for its action upon certain well-known laws in acoustics.

"The Phonograph is composed of three parts mainly,—namely, a receiving, a recording, and a
transmitting apparatus. The receiving apparatus consists of a curved tube, one end of which is fitted with a mouthpiece, for the convenience of speaking into it. The other end is about two inches in diameter, and is closed in with a disc or diaphragm of exceedingly thin metal, capable of being thrust slightly outwards or vibrated upon gentle pressure being applied to it from within the tube. To the centre of this diaphragm—which forms a right angle with the horizon—is fixed a small blunt steel pin, which, of course, partakes of the vibratory motion of the diaphragm. This arrangement is carried on a table, and is fitted by a set screw, by means of which it can be adjusted relatively to the second part of the apparatus—the recorder. This is a brass cylinder, about four inches in length and four inches in diameter, cut with a continuous V groove from one end to the other, so that it in effect represents a large screw. Measuring along the cylinder from one end to the other, there are ten of these grooves to the inch, or about forty in the whole length. The total length of this continuous groove, or screw-thread, is about 42 feet—that is to say, that would be the length of the groove if it were stretched out in a straight line. This cylinder is mounted on a horizontal axis or shaft carried in bearings at either end, and having its circumferential face presented to the steel point of the receiving apparatus. The shaft is prolonged for four inches or so beyond the ends of
the cylinder, and one of the prolongations is cut with a screw thread, and works in a screwed bearing. This end terminates in a handle; and as this is turned round the cylinder is not only revolved, but, by means of the screwed spindle, is caused to travel its whole length in front of the steel point, either backwards or forwards.

"We now see that if the pointer be set in the groove in the cylinder at its commencement, and the handle turned, the groove would be traversed over the point from beginning to end, or, conversely, the point would always be presented to the groove. A voice speaking in the receiver would produce waves of sound which would cause the point to enter to greater or less depths into this groove, according to the degree of intensity given to the pressure upon the diaphragm set up by the vibrations of the sound produced. This, of course, of itself would mean nothing; but in order to arrest and preserve these sound-pressures, a sheet of tinfoil is interposed, the foil being inelastic and well adapted for receiving impressions. This sheet is placed around the cylinder and its edges lightly fastened together by mouth-glue, forming an endless band, and held on the cylinder at the edges by the india-rubber rings. If a person now speaks into the receiving tube and the handle of the cylinder be turned, it will be seen that the vibrations of the pointer will be impressed upon that portion of the tinfoil over the hollow groove and retained by it.
These impressions will be more or less deeply marked according to the modulations and inflexions of the speaker's voice. We have now a message verbally imprinted upon a slip of metal. Sound has, in fact, been converted into visible form, and we have now to translate that message by reconverting it into sound. We are about, in effect, to hear our own voice speaking from a machine the words which have just fallen from our lips. To do this we require the third portion of Mr. Edison's apparatus—the transmitter.

"This consists of what may be called a conical metal drum, having its larger end open, the smaller end, which is about two inches in diameter, being covered with paper, which is stretched taut as is the parchment of a drum-head. Just in front of this paper diaphragm is a light flat steel spring, held in a vertical position and terminating in a blunt steel point projecting from it, and corresponding with that on the diaphragm of the receiver. The spring is connected with the paper diaphragm of the transmitter by means of a silken thread, which is placed just sufficiently in tension to cause the outer face of the diaphragm to assume a slightly convex form. This apparatus is placed on the opposite side of the cylinder to the receiver. Having set the latter apparatus back from the cylinder, and having, by turning the handle in a reverse direction, set the cylinder back to what we may term the zero point, the transmitting
apparatus is advanced towards the cylinder by means of a set screw until the steel point rests without absolute pressure in the first indentation made by the point of the receiver. If now the handle be turned at the same speed as it was when the message was being recorded, the steel point will follow the line of impression and will vibrate in periods corresponding to the impressions previously produced on the foil by the point of the receiving apparatus. Vibrations of the requisite number and depth being thus communicated to the upper diaphragm, there will be produced precisely the same sounds that in the first instance were required to produce the impressions formed on the tinfoil. Thus the words of the speaker will be heard issuing from the conical drum in his own voice, tinged, however, with a slight metallic or mechanical tone. If the cylinder be revolved more slowly than when the message was being recorded, the voice assumes a bass tone; if more quickly, the message is given with a childish treble. These variations occur according as the vibrations are more or less frequent.

"Such is the apparatus, and it promises to be one of the most remarkable of the recent marvels of science. The machine we have described is the first Mr. Edison has made, but he is now constructing one to be set in motion by clockwork, the cylinder being 16 inches long. In the present machine, for recording a long message, as soon as one strip of the tinfoil is filled it is removed and replaced
by others until the communication has been completed. In using the machine for the purpose of correspondence, the metal strips are removed from the cylinder and sent to the person with whom the speaker desires to correspond, and who must possess a machine similar to that used by the sender. The person receiving the strips places them in turn on the cylinder of his apparatus, applies the transmitter, and puts the cylinder in motion, when he hears his friend's voice speaking to him from the indented metal. And he can repeat the contents of the missive as often as he pleases until he has worn the metal through. The sender can make an indefinite number of copies of his communication by taking a plaster of Paris cast of the original strip and rubbing off impressions from it on a clean sheet of foil. It will thus be seen, as we stated at the commencement of this article, that the voices of those who have left us, either for ever or for a season only, can be heard talking with us if we so desire it. The invention has been so recently and so quickly developed into existence by Mr. Edison that he himself can hardly say what its practical value is or will prove to be. Numerous applications suggest themselves, but beyond those which we have alluded it is difficult to say with precision how they would work out in practice. In cases of depositions it might be of the highest importance to have oral evidence mechanically reproduced in a court of justice. Authors, too, may perhaps be saved the trouble of writing their compositions.
A gentleman writes from New Jersey:—

"Mr. Edison has improved this instrument greatly. The sounds are reproduced by the same diaphragm as you speak against, and are very much reinforced by the application of a large funnel-shaped tube to the mouthpiece. By means of this tube the reproduction of ordinary conversation can be heard distinctly 100 feet away. The machine, as exhibited last Monday, was a perfect success, whistling, singing, whispering, &c., being reproduced accurately, and the more difficult sounds, such as the "S's," and the "sh" in "shall," the "ve" in "valve," and all those we found difficulty in overcoming on the Telephone, came clear and distinct. President Orton and others tested the instrument's powers of repeating spoken words. On one occasion three gentlemen spoke in succession—the first in English, the second in Spanish, and the third in Hungarian—and the machine repeated the words so as to be heard distinctly by a dozen persons standing around the apparatus. "Old Uncle Ned" and a verse of a Spanish love song were next sung, and reproduced by the instrument to the satisfaction of all. Mr. Edison says the machine is designed for practical use by business men and lawyers, &c. He is now making a new machine which will have a plate sufficiently large to receive 500 spoken words. Thus a man may dictate half a dozen letters before leaving his office, and his clerks may write them out in his
absence. If he should wish to say more, he can remove the first plate and put in a second, and so on up to any number he may require."

The *English Mechanic* of January 25th, 1878, says:—

"Mr. Edison's Phonograph is progressing steadily towards a practical degree of perfection. Thanks to the courtesy of Mr. G. B. Scott, the superintendent of the Gold and Stock Telegraph Company of New York, we have been enabled to study a strip of tin-foil taken from the cylinder of the Phonograph. Notwithstanding the vicissitudes of a Transatlantic voyage, the series of indentations made by the vibrations made by the point were quite distinct. It is practically impossible to convey a correct idea of the different appearances of the groups of indentations, the dotted and plain rules employed as a diagram by some of our contemporaries failing entirely as a representation of a Phonograph sheet. The insulations are slight and deep, varying between the result of the faintest touch of a whisper and the energetic punch of some aspirated syllable; they are moreover grouped in twos and threes, the members of the groups being sometimes joined (osculating), and at others separated; while both long and short intervals occur between them. Here and there the indentations takes the form of a plain line, which, on closer inspection, betrays the presence of a slight ripple in parts."
USES OF THE TELEPHONE AND PHONOGRAPH.

The most obvious use is the sending messages, telegraphic fashion, long distances; but other important applications of the principle have already been made. The Telephone is already in use in coal mines, recording not only the words of the human voice—a sufficiently important matter, considering the distance from the surface at which miners work, and the difficulty of rapid communication—but the varying pressure of atmospheric air and subterranean gases, a service of great value as a means of ascertaining the presence of danger. The Telephone is made to repeat the sound produced by a piece of spring vibrated at every tenth revolution of an anemometer (or instrument for registering the pressure of the atmosphere), by suitable mechanism, and situated in close proximity to the pole of a magnet, beside which it vibrates without even actually touching it. A coil surrounding this magnet is joined up in the usual way to wires leading to the Telephone, and it is found that every "tick" of the steel spring is heard in the Telephone. This is the joint invention of Mr. A. Le Neve Foster, of the Silvertown Telegraph Company, and Mr. H. Hall, one of H. M.'s Inspectors of Mines.
Telephonic communication has also been made with divers, the method being thus described by Professor Bell:

"Inside the diver's helmet you place a Telephone of convenient structure, and in the place of using a separate telegraph wire we use the wire that is coiled up inside the breathing pipe. In every breathing pipe of course there must be a coil of wire, in order to withstand the pressure of the water, and that wire we find can be used for the purposes of the Telephone, so that the wire inside this pipe is connected with the Telephone inside the diver's helmet, and the earth connection is simply made by attaching the other wire to the helmet itself, which is in contact, outside, with the salt water. I had the pleasure of trying to converse with a diver with perfect success at Messrs. Siebe and Gorman's, in a tank. He heard every word I said, and I was able to understand every word he said; and when I told him to come up, by word of mouth, he obeyed me."

A writer in The Commercial Travellers' Gazette says:

"It is quite within the reach of moderate expectation that before many months have passed the chief commercial hotels will have telephones fitted, so that principals at home may communicate with travellers as readily as the heads of the firm in the counting-house can send an order through the familiar speaking tube to a warehouseman in an upper story."
one of his comic poems, makes a pedlar praise the powers of an ear-trumpet he wanted to sell by averring that he sold one to a deaf woman, 'and the very next day she heard from her husband at Botany Bay;' but the Telephone will beat that. The Commercial's peace of mind may, perhaps, be a little disturbed if, when he has returned after his day's round to his snug quarters in the Commercial Room, the 'governor' in London should be inclined to be chatty, and transmit a string of questions as to what the day's business is worth; whether old Brown has been easily got at for a good line, or Jones and Smith have been in an amiable and buying mood. In such cases the recording or printing instrument had better be used, as the wrong man might put his ear to the metallic disc, or perhaps send back a reply more humorous than appropriate; or it might be, if very audacious, and the dinner had been inspiriting, transmit to the prosaic inquirer a verse of the song which had just set the table in a roar. The affectionate family man, by the necessities of commerce far away from home, would, of course, be delighted to have a word from the partner of his joys and sorrows; and how sweet to hear the little ones lisp 'Good night,' or even to hear the baby cry, and so be assured that its lungs are sound, through the medium of this wonderful Hotel-ephone—if we may be pardoned for so designating it."

As to the extent to which the Phonograph can be
made available, it is not easy to keep on the safe side of exaggeration. Many people keep old letters—lovers, we have heard, delight to read tender epistles over and over again; but now they can treasure up old voices!—preserve the little metal slip, and hear again and again the words so dear, and the tones still dearer. The last utterances of a dearly-loved parent, child, or friend may be treasured and listened to, though continents and oceans intervene.

Will phonographic slips be used as Christmas and New Year cards? or—how charming the idea!—as Valentines? It may be; and, if so, a new style of verses may be required—something of this kind:

‘Will you, dearest, be my own?
Tell me through the Tell-e-phone.’

Or, more sentimentally:

‘Speak but one word, and bid my heart rejoice,
One little word, of all words loved the most;
Let me but hear it in my darling’s voice—
And please transmit it by this evening’s post.
I cannot see you smile, but if you laugh,
Shall hear the merry tones by Phonograph.’

THE END.
New Books and New Editions
PUBLISHED BY
WARD, LOCK, & CO.

FOR FAMILY READING AND REFERENCE.

TWO HUNDRED AND SIXTY-FIFTH THOUSAND.
New Edition, post 8vo, half-bound, price 7s. 6d.; half-calf, 10s. 6d.

Mrs. BEETON'S
BOOK OF HOUSEHOLD MANAGEMENT.
Comprising every kind of Practical Information on Domestic Economy
and Modern Cookery, with numerous Woodcuts and Coloured Illustrations.

"Mrs. Isabella Beeton's 'Book of Household Management' aims at being a compendium of
household duties in every grade of household life, from the mistress to the maid-of-all-work. It is
illustrated by numerous diagrams, exhibiting the various articles of food in their original state,
and there are also coloured plates to show how they ought to look when dished and ready for the
table. The verdict of a practical cook of great experience, on returning the book to her mistress,
was, 'Ma'am, I consider it an excellent work; it is full of useful information about everything,
which is quite delightful; and I should say anyone might learn to cook from it who never tried
before.'—The Athenaeum.

Second Edition, price One Guinea, cloth gilt, and gilt edges;
or in Two Volumes, 25s.

BEETON'S GREAT BOOK OF POETRY.
From Caedmon and King Alfred's Boethius to Browning and Tennyson. Containing nearly Two Thousand of the Best Pieces in the English Language. With Sketches of the History of the Poetry of our Country, and Biographical Notices of the Poets. Presenting a Collection of Poems never before gathered together
within the limits of a Single Volume.

Four Hundred English Poets are represented in this Volume. A separate Collection of American Poems, with Biographies, is added to these. Thus, in one book, a view of the Growth and Changes of the English Language, as seen in its Highest Developments, is possible. Not less than a Thousand Volumes have been examined in order to form a selection worthy to receive respect and regard from all Lovers of the Divine Art of Poesy.

Published by Ward, Lock, and Co.
Enlarged, corrected, and revised to the latest date.

THE DICTIONARY OF UNIVERSAL INFORMATION, of Geography, History, and Biography. Containing 23,000 Distinct Articles, 12 Large Coloured Maps, and 110 Separate Tinted Plates of Views and Portraits.

Just ready, Vol. I.—A to H—containing 59 separate Tinted Plates and 7 large Coloured Maps—Africa, North America, South America, Asia, Australia, China, and Europe. Demy 8vo, 836 pp., cloth gilt, price 10s. 6d.

"This work is a marvel of condensation, containing in comparatively small compass a perfect mine of information, under the three great heads of Geography, History, and Biography. The seven Maps in the (first) volume are admirably executed."—Leeds Mercury, January 24, 1877.

In Two Vols., price 21s., half-bound, the Revised and Enlarged Edition, newly Illustrated by 128 full-page and 1,500 smaller Engravings.

BEETON'S SCIENCE, ART, AND LITERATURE: A Dictionary of Universal Information; comprising complete Summary of the Moral, Mathematical, Physical, and Natural Sciences; a plain Description of the Arts; an interesting Synopsis of Literary Knowledge, with the Pronunciation and Etymology of every leading term. The work has been with great care Revised, Enlarged, and newly Illustrated.

** There is no volume extant comparable to this for the amount of information compressed into a small space. Amongst works on Technical Science and Information, there is no volume that can be more safely recommended to teachers, students, or practical men, than Beeton's Scientific Dictionary.

Half-bound, 7s. 6d.; half-calf, 10s. 6d., copiously Illustrated.

Plainly written and carefully illustrated information upon the Animal Kingdom is entitled to rank high amongst the aids to knowledge, and we believe that the present work will materially assist readers and students in following their examination of Comparative and Human Physiology, as well as give the answers to every-day questions in Natural History.

Half-bound, price 7s. 6d.; half-calf, 10s. 6d.

BEETON'S DICTIONARY OF BIOGRAPHY: Being the Lives of Eminent Persons of all Times. With the Pronunciation of every Name. Illustrated by Portraits, Engraved after Original and Authoritative Pictures, Prints, &c. Containing in all upwards of Ten Thousand Distinct and Complete Articles.

This Biographical Dictionary contains, in the most compact form possible, and within a compass of some 700 or 800 pages, an account of the Lives of Notable and Eminent Men and Women in all epochs. The Portraits, printed on tinted paper, are faithfully reproduced from original or authoritative sources. These Engravings form a totally new feature in Beeton's Biographical Dictionary, never having appeared in the First Edition.

Published by Ward, Lock, and Co.
New Books and New Editions.

Half-bound, price 7s. 6d.; half-calf, 10s. 6d.

Now Ready, cloth gilt, 1,536 pages, price 7s. 6d.

BEETON'S LAW BOOK. A Compendium of the Law of England in reference to Property, Family and Commercial Affairs, including References to about Ten Thousand Points of Law, Forms for Legal Documents, with numerous Cases, and valuable ample Explanations. With a full Index—25,000 references, every numbered paragraph in its particular place and under its general head.

How frequently a want is felt of better legal knowledge upon points which continually arise in the practical experience of most persons. To supply this want is the aim of BEETON'S LAW BOOK. It will be found a most valuable and reliable work for consultation on all ordinary legal questions.

Second and Enlarged Edition now Ready, elegantly bound, gilt edges, Chromic Title and Frontispiece, 7s. 6d.

BEETON'S BOOK OF NEEDLEWORK. Consisting of Instructions, Illustrations, and Designs by English, German, and French Artists. Every Stitch Described and Engraved with the utmost Accuracy, and the Quantity of Material requisite for each Pattern stated. Comprising Tatting Patterns, Embroidery Patterns, Crochet Patterns, Knitting and Netting Patterns, Monogram and Initial Patterns, Berlin Wool Instructions, Embroidery Instructions, Crochet Instructions, Knitting and Netting Instructions, Lace Patterns, Point Lace Patterns, Guipure Patterns. In all, upwards of Five Hundred Accurate Patterns, and New and Old Stitches.

* Just as The Book of Household Management takes due precedence of every other Cookery Book, so this extraordinary collection of Needlework Designs will become the book, par excellence, for Ladies to consult, both for Instruction in Stitches and all kinds of Work, and Patterns of elegant style and irreproachable good taste.

Price 7s. 6d., Coloured Plates; half-calf, 10s. 6d.

BEETON'S BOOK OF GARDEN MANAGEMENT. Embracing all kinds of Information connected with Fruit, Flower, and Kitchen Garden Cultivation, Orchid Houses, Bees, &c. &c. Illustrated with Coloured Plates of surpassing beauty, drawn from nature, and numerous Cuts.

Half-bound, price 7s. 6d.; half-calf, 10s. 6d.

BEETON'S BOOK OF HOME PETS: Showing How to Rear and Manage in Sickness and in Health—Birds, Poultry, Pigeons, Rabbits, Guinea Pigs, Dogs, Cats, Squirrels, Tortoises, Fancy Mice, Bees, Silkworms, Ponies, Donkeys, Goats, Inhabitants of the Aquarium, &c. &c. Illustrated by upwards of 200 Engravings and 11 beautifully Coloured Plates by HARRISON WEIR and F. KEYL.

Published by Ward, Lock, and Co.
New Books and New Editions.

One Thousand Illustrations, price 10s. 6d., half-bound.

Just Published, crown 8vo, cloth, price 7s. 6d., New and Revised Edition.

A Million of Facts of Correct Data and Elementary Information in the Entire Circle of the Sciences, and on all Subjects of Speculation and Practice. Much Enlarged and carefully Revised and improved, and brought down to the Present Year. A large amount of New Matter added.

Handsomely bound, 7s. 6d.

Treasury of Natural Science. From the German of Professor Schoedler, with numerous Additions by HENRY MEDLOCK, F.C.S. Fourth Edition. With copious Index, and upwards of 500 Engravings.

Drawing Books.

Now Ready. New and Revised Edition, demy 8vo, cloth, 2s.

Drawing Book (The Illustrated). Comprising a Complete Introduction to Drawing and Perspective; with Instructions for Etching on Copper or Steel, &c. &c. By ROBERT SCOTT BURN. Illustrated with above 300 Subjects for Study in every branch of Art.

Demy 8vo, cloth, 2s.

Architectural, Engineering, and Mechanical Drawing Book (The Illustrated). By ROBERT SCOTT BURN. With 300 Engravings.

Steam Engine (The): Its History and Mechanism. Being Descriptions and Illustrations of the Stationary, Locomotive, and Marine Engine. By ROBERT SCOTT BURN.

Demy 8vo, cloth, 2s.

Mechanics and Mechanism. By ROBERT SCOTT BURN. With 250 Illustrations.

New Work on Ornament and Design.—Demy 8vo, cloth, 2s.

Published by Ward, Lock, and Co.
New Books and New Editions.

Becton's "All About It" Books.

Now Ready, handsomely bound, price 2s. 6d. each.

1. ALL ABOUT COOKERY: Being a Dictionary of Every-day Cookery. By Mrs. Isabella Beeton.

2. ALL ABOUT EVERYTHING: Being a Dictionary of Practical Recipes and Every-day Information. An entirely New Domestic Cyclopaedia, arranged in Alphabetical Order, and usefully Illustrated.

3. ALL ABOUT GARDENING: Being a Dictionary of Practical Gardening.

4. ALL ABOUT COUNTRY LIFE: A Dictionary of Rural Avocations, and of Knowledge necessary to the Management of the Farm, &c.

5. ALL ABOUT HARD WORDS: Being a Dictionary of Every-day Difficulties in Reading, Writing, &c. &c.

Price 1s., cloth, containing 208 pages, 477 Recipes, and Formulae for Mistresses and Servants. Also, with Coloured Plates, price 1s. 6d.

MRS. BEETON'S ENGLISHWOMAN'S COOKERY BOOK.

Comprising Recipes in all branches of Cookery, and accurate Descriptions of Quantities, Times, Costs, Seasons, for the various Dishes.

The capital Coloured Plates render the Eighteenpenny Edition of The ENGLISHWOMAN'S COOKERY BOOK absolutely unapproachable in point of excellence and cheapness. There are infinitely more Recipes in this volume than in any other Cheap Cookery Book, their accuracy is beyond question, and the addition of these Coloured Plates removes all possibility of successful rivalry which may be attempted by imitative and meretricious displays.

Price 3s. 6d., 476 pages, with many Engravings in the Text, and Coloured Plates, exquisitely produced by the best Artists.

BEETON'S EVERY-DAY COOKERY & HOUSEKEEPING BOOK. Comprising Instructions for Mistress and Servants, and a Collection of Practical Recipes. With 104 Coloured Plates, showing the Modern Mode of sending Dishes to Table.

Price 1s., cloth, containing 252 pages; also, with Coloured Plates, price 1s. 6d.

BEETON'S GARDENING BOOK: Containing such full and Practical Information as will enable the Amateur to manage his own Garden. Amply Illustrated.

NEW AND IMPORTANT BOOK OF REFERENCE ON GARDENING.

460 pages, with Coloured Plates and Engravings in the Text, price 3s. 6d.

Published by Ward, Lock, and Co.
New Books and New Editions.

Beeton's Legal Handbooks.

Now Ready, in strong Linen Covers, price 1s. each.

1. Property.
2. Women, Children, and Registration.
3. Divorce & Matrimonial Causes.
4. Wills, Executors, and Trustees.
5. Transactions in Trade, Securities, and Sureties.
6. Partnership and Joint-Stock Companies.
7. Landlord and Tenant, Lodgers, Rates and Taxes.
10. Compositions, Liquidations, and Bankruptcy.
11. Conveyance, Travellers, and Innkeepers.

These Books are as excellent as they are cheap. The persevering labour devoted to their production has resulted in the classification and completeness which distinguish them among similar attempts. Each one of the series has its own separate index, and the amount of information is much greater and more varied than the necessary brevity of the title suggests.

Cloth elegant, gilt edges, price 3s. 6d.

Beeton's Book of Birds; showing How to Rear and Manage them in Sickness and in Health.

This volume contains upwards of One Hundred Engravings and Six exquisitely Coloured Plates printed Facsimile from Coloured Sketches by Harrison Weir.

Cloth elegant, gilt edges, price 3s. 6d., uniform with the "Book of Birds."

Beeton's Book of Poultry & Domestic Animals; showing How to Rear and Manage in Sickness and in Health—Pigeons, Poultry, Ducks, Turkeys, Geese, Rabbits, Dogs, Cats, Squirrels, Fancy Mice, Tortoises, Bees, Silkworms, Ponies, Donkeys, Inhabitants of the Aquarium, &c.

This Volume contains upwards of One Hundred Engravings and Five Coloured Plates from Water-Colour Drawings by Harrison Weir.

Price 5s., numerous Illustrations, cloth, gilt edges.

Beeton's Household Amusements and Enjoyments. Comprising Acting Charades, Burlesques, Conundrums, Enigmas, Rebus, and a number of new Puzzles in endless variety. With folding Frontispiece.

In coloured boards, price 6d. (A wonderful Collection of Information.)

Beeton's Cottage Management. Comprising Cookery, Gardening, Cleaning, and Care of Poultry, &c.

Published by Ward, Lock, and Co.
New Books and New Editions.

BOOKS FOR BOYS.

Beeton's Boys' Own Library.

The best set of Volumes for Prizes, Rewards, or Gifts to English Lads. They have all been prepared by Mr. Beeton with a view to their fitness in many ways and handsome appearance for Presents for Youth, amongst whom they enjoy an unrivalled degree of popularity, which never flags.

Coloured Plates and Illustrations, price 5s. cloth; or cloth gilt, gilt edges, 6s.

1. Stories of the Wars. TILLOTSON. From the Rise of the Dutch Republic to the Death of Oliver Cromwell.
2. A Boy's Adventures in the Barons' Wars; or, How I won My Spurs. J. G. EDGAR.
3. Cressy and Poictiers. J. G. EDGAR.
4. Runnymede and Lincoln Fair. J. G. EDGAR.
5. Wild Sports of the World. J. GREENWOOD.
6. Curiosities of Savage Life. By the Author of "Wild Sports of the World."
7. Hubert Ellis.
8. Don Quixote. CERVANTES. 300 Illustrations.
9. Gulliver's Travels. By Dean SWIFT.
10. Robinson Crusoe. By DANIEL DEFOE.
11. Silas the Conjurer.
12. Savage Habits and Customs. By the Author of "Wild Sports of the World."
13. Reuben Davidger. J. GREENWOOD.
15. Zoological Recreations. By W. J. BRODERIP, F.R.S.
17. The World’s Explorers. Including Livingstone’s Discoveries and Stanley’s Search.
18. The Man among the Monkeys; or, Ninety Days in Apeland. Illustrated by G. Doré.

NEW BOOKS FOR BOYS.

Ice World Adventures; or, Voyages and Travels in the Arctic Regions. From the Earliest Period to the English Expedition of 1875. By JAMES MASON. With 48 full-page and other Illustrations. Crown 8vo, cloth gilt, 5s.

Lion Hunting; or, Adventures and Exploits in India, Africa, and America. By JULES GERARD. Crown 8vo, cloth gilt, gilt edges, 5s.

Antony Waymouth; or, The Gentlemen Adventurers. By W. H. KINGSTON. Crown 8vo, cloth gilt, 3s. 6d.

Published by Ward, Lock, and Co.
Beeton's Boys' Prize Library.

NEW PRESENTATION VOLUMES FOR BOYS.

1. Jetton's *Fome from Fort*. 1,088 pages, 8vo, with numerous Engravings, full-page and in the text, cloth gilt, price 5s.; gilt edges, 6s.

3. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

4. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

5. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

6. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

7. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

8. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

9. **BEETON'S BRAVE TALES, BOLD BALLADS, AND TRAVELS BY SEA AND LAND.** Containing: Historical Stories—Hubert Ellis—Ingonyama—Highland Regiments as they Once Were—King of Trumps—Scientific Papers—Silas the Conjurer—Sports and Pastimes—Victoria Cross Gallery—The Zoological Gardens, &c. Cloth, plain edges, 5s.; gilt edges, 6s.

The Young Ladies' Library.

With Illustrations. Handsomely bound in cloth gilt, price 2s. 6d.

1. **Sunshine and Rain; or, Blanche Cleveland.** By A. E. W.

2. **Roses and Thorns; or, Five Tales of the Start in Life.**

3. **Bible Narratives; or, Scripture Stories.** By the Rev. Frederick Calder, M.A.

4. **Pleasure and Profit; or, Lessons at Home.** A Book for Boys and Girls.

5. **Country Pleasures; or, The Carterets.** By A. E. R.

6. **Stories of Courage and Principle; or, Fit to be a Duchess.** By Mrs. Gillespie Smyth.

7. **Who are the Happy Ones?** or, Home Sketches. By the Author of "Quiet Thoughts for Quiet Hours," &c.

8. **The Progress of Character; or, Cliffethorpe.** By H. Power.

9. **What can She Do?** By Rev. E. P. Roe.

Published by Ward, Lock, and Co.
New Books and New Editions.

S. O. Beeton's National Reference Books,
FOR THE PEOPLE OF GREAT BRITAIN AND IRELAND.
The Cheapest and Best Reference Books in the World.

Each Volume complete in itself, and containing from 512 to 590 Columns. Price 1s. in strong cloth binding.

Beeton's British Gazetteer: A Topographical and Historical Guide to the United Kingdom. Compiled from the Latest and Best Authorities. It gives the most Recent Improvements in Cities and Towns; states all the Railway Stations in the Three Kingdoms, the nearest Post Towns and Money Order Offices.

Beeton's British Biography: From the Earliest Times to the Accession of George III.

Beeton's Modern Men and Women: A British Biography from the Accession of George III. to the Present Time.

Beeton's Classical Dictionary: A Cyclopaedia of Greek and Roman Biography, Geography, Mythology, and Antiquities.

Beeton's Medical Dictionary. A Safe Guide for every Family, defining with perfect plainness the Symptoms and Treatment of all Ailments, Illnesses, and Diseases. 592 columns.

Beeton's Date Book. A British Chronology from the Earliest Records to the Present Day.

Beeton's Dictionary of Commerce. A Book of Reference. Containing an Account of the Natural Productions and Manufactures dealt with in the Commercial World; Explanations of the principal Terms used in, and modes of transacting Business at Home and Abroad.

Beeton's Modern European Celebrities. A Biography of Continental Men and Women of Note who have lived during the last Hundred Years, or are now living.

Beeton's Ready Reckoner. A Business and Family Arithmetic. With all kinds of New Tables, and a variety of carefully digested Information, never before collected. Cloth, 1s.

Beeton's Sixpenny Ready Reckoner. 96 pages. Price One Shilling each.

Beeton's Investing Money with Safety and Profit.

Beeton's Complete Letter-Writer, for Ladies and Gentlemen. Containing: The most approved Love Letters—Applications for Employment—Replies to Advertisements—Answers to Invitations—Requests to execute Commissions—and Letters respecting Domestic Affairs, Visits, and Education; also Brief Complimentary Notes—Forms for the Address, Commencement, and Conclusion of Letters, and useful Hints regarding Letter-Writing generally. 8vo, 1s.

Beeton's Complete Letter-Writer for Ladies. 6d.

Beeton's Complete Letter-Writer for Gentlemen. 6d.

Published by Ward, Lock, and Co.
Handsome Presentation Volumes.

Now Ready, price 10s. 6d., a New Volume by Henry Southgate, Author of "Many Thoughts of Many Minds," "Musings About Men," &c.

This Volume will especially recommend itself to those who can appreciate and value the best thoughts of our best writers.

Price One Guinea, exquisitely bound, cloth girt and gilt edges, the Best Books ever produced in Colours, and eminently fitted for Presents.

The Fields and the Woodlands, Illustrated by Painter and Poet. Consisting of Twenty-four Pictures, printed in the highest style of Chromographic art, by Leighton Brothers. With Verses of character and beauty appropriate to the Pictures. Printed on thick toned paper.

Price One Guinea, uniform with the above.

Pictorial Beauties of Nature. With Coloured Illustrations by Famous Artists. This magnificent book forms a Companion Volume to "The Fields and the Woodlands," and the splendid collection of Twenty-four Pictures is unrivalled by anything ever brought together within the bounds of a single volume.

In One handsome Volume, cloth girt, 15s.; elegantly bound in bevelled boards, gilt edges, price 21s.

Beautifully bound in cloth girt, price 7s. 6d.; in bevelled boards, gilt edges, price 10s. 6d.; in morocco, price 21s.

Handsomely bound in cloth, gilt sides and edges, price 21s.

Old English Ballads. Illustrated with 50 Engravings from Drawings by John Gilbert, Birket Foster, Frederick Tayler, Joseph Nash, George Thomas, John Franklin, and other eminent Artists.

Fcap. 4to, cloth, gilt side, back, and edges, price 21s.

Christmas with the Poets. A Collection of Songs, Carols, and Descriptive Verses relating to the Festivals of Christmas, from the Anglo-Norman Period to the Present Time. Embellished with 53 Tinted Illustrations by Birket Foster. With Initial Letters and other Ornaments printed in Gold, and with Frontispiece in Colours.

Published by Ward, Lock, and Co.
New Books and New Editions.

Character Sketches, Development Drawings: Pictures of Wit and Humour, done in Permanent Lines for Posterity. By the late Charles H. Bennett and Robert B. Brough.

By the testimony of all his contemporaries, the late C. H. Bennett was unequalled in his peculiar walk as a draughtsman. He certainly was unrivalled altogether in the thoughtfulness of his compositions. His early death was a great loss. As an author, Robert Brough shares, to the full, in the general opinion entertained of his friend and colleague in the work now first produced as a whole. He was a writer whose attainments were exceedingly great, and whose wit and humour have been universally acknowledged and enjoyed.

On toned paper, beautifully bound, gilt edges, price 15s.

Poets' Wit and Humour. Selected by W. H. Wills. With 100 Curious Engravings from Drawings by Charles Bennett and George Thomas.

Sabbath Bells Chimed by the Poets. With Coloured Engravings by Birket Foster.

Appropriately bound, price 7s. 6d., cloth; bevelled boards, gilt edges, 10s. 6d.

The Pilgrim's Progress from this World to that which is to Come. By John Bunyan. With a Memoir of the Author by H. W. Dulcken, Ph.D., and 100 Page and other Illustrations by Thomas Dalziel, engraved by the Brothers Dalziel.

New Edition, price 10s. 6d., appropriately bound.

Price 21s.

Ditto ditto, in elegant cloth binding, leather back, price 10s. 6d.

The Poetical Works of Edgar Allan Poe. With Illustrations after Tenniel, Birket Foster, Pickersgill, &c., and Head and Tail Pieces by Harry Rogers.

Demy 8vo, price 7s. 6d., handsomely bound; half-calf, 10s. 6d.

PALESTINE: Its Holy Sites and Sacred Story.

Amply Illustrated with Maps and more than 300 Wood Engravings, executed by Eminent Artists.

The design of the work is to provide a Consecutive History of Palestine, from the time of Abram to that of the final Destruction of Jerusalem under Titus. It also furnishes, in immediate association with the events recorded, a Topographical Description of the Land.

Published by Ward, Lock, and Co.
Bibles and Commentaries.

THE NEW ILLUSTRATED FAMILY BIBLE.
4to, cloth gilt, illuminated side, plain edges, 2is.; ditto, red edges, 22s.; half-bound calf, red edges, 31s. 6d.; morocco, gilt edges, 42s.; Turkey morocco, extra, 52s. 6d.

COBBIN'S ILLUSTRATED FAMILY BIBLE and PEOPLE'S COMMENTARY. With Family Register, and over One Thousand Page and other Illustrations of Biblical Localities, and of Incidents from the Holy Scriptures, by Overbeck, Rethel, and other great Scriptural Artists. With a large number of full-page Coloured Pictures.

A Family Bible and Commentary, cheap in price, trustworthy In explanations, and attractive in form, has long been desired. "COBBIN'S ILLUSTRATED FAMILY BIBLE and PEOPLE'S COMMENTARY" will be found to give a number of advantages to purchasers. Some of these advantages are described below.

I. It is the first Family Bible published with beautifully Coloured Plates.
II. The present Family Bible is by far the Cheapest yet published. The price is scarcely one-third of the price which is now paid for the lowest priced Family Bible, although these have been hitherto considered marvels of cheapness.
III. The Commentary, by one of our most eminent Biblical Scholars, will be found complete, and affords all needed information for an intelligent perusal of Holy Writ, now so closely searched, and made the subject of much hostile as well as friendly criticism. Thus in this edition of the Bible, purchasers possess an admirable Commentary—clear, concise, and thoroughly trustworthy. Many Commentaries occupy the space of six volumes, costing a large sum of money; and hardly any really good Commentary can be bought which does not occupy as many as three volumes. But "COBBIN'S FAMILY BIBLE and PEOPLE'S COMMENTARY" combines, for Clergymen, Teachers, and Students, in one compact, handsome, and portable volume, both the Text of Holy Writ and a full Commentary. The well engraved and printed Maps and Illustrative Engravings, the beautiful many-coloured Pictures, the artistic and useful Register of Family Events, printed in Tints, and ruled for the insertion of the Family Names and Events, all unite to form a Bible for the People of Great Britain, as well fitted for the Cottage by its cheapness as for the Palace by its Completeness of Text and Commentary and beauty of appearance.

Price 8s. 6d.; French morocco, 10s. 6d.

TEACHER'S PICTORIAL BIBLE and BIBLE DICTIONARY.
The Authorized Version. Illustrated by Graphic Engravings and Maps. Containing the Old and New Testaments, translated out of the Original Tongues, and with the former Translations diligently Compared and Revised by His Majesty's Special Command. Appointed to be read in Churches. With the most approved Marginal References, and Historical and Descriptive Illustrations appended to each Book and in the Dictionary. By the Rev. Ingram Cobbin, M.A.

Now Ready, Uniform with Beeton's Shilling Gazetteer, containing Five Hundred and Twelve Columns of closely printed matter.

BEETON'S BIBLE DICTIONARY.
Price 15s.; in cloth boards, 15s. 6d.; half-bound, 2s.

* * * To Bible Teachers, Sunday School Teachers, Schoolmasters, Pupil Teachers, and all interested in aiding the Study of the Scriptures, Special Terms will be given when a number not less than a Dozen Copies of Beeton's Bible Dictionary are ordered.

Published by Ward, Lock, and Co.
COBBIN'S COMMENTARIES.

The Publishers desire to call the attention of the Public to some very important changes they have made in these valuable Commentaries. They have reduced the varieties of the books and the bindings. The style of the bindings will all be found entirely new and attractive. The prices have been revised, and in all cases very greatly reduced.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crown 8vo, cloth antique, red edges, lettered on side</td>
<td>7 6 s. d.</td>
</tr>
<tr>
<td>2. French morocco, blind, gilt edges</td>
<td>10 6 s. d.</td>
</tr>
<tr>
<td>3. Pigskin, bevelled boards, blind, gilt edges</td>
<td>14 0 s. d.</td>
</tr>
</tbody>
</table>

The Companion Bible meets the wants and means of a numerous class of readers, and, indeed, forms a complete Cyclopedia of Oriental intelligence. The reader will here find ample information respecting the Manners, Customs, and Geography of the Holy Land, and of those countries which were in some way associated with it in the historical pages of Scripture, and a good Index will facilitate every inquiry.

Cobbin's Portable Commentary. A Cheap Edition of the Portable Commentary, for Sabbath Schools and Distribution, being the Cheapest Commentary of the Holy Scriptures ever published. With 15,000 Critical and Illustrative Notes, and 50,000 References and Readings; together with a History connecting the Old and New Testaments, various useful Tables, and Nine Coloured Maps. By the Rev. Ingram Cobbin, M.A.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Paste Grain</td>
<td>6 6 s. d.</td>
</tr>
<tr>
<td>8. Cloth</td>
<td>3 6 s. d.</td>
</tr>
<tr>
<td>9. French morocco, blind, gilt edges</td>
<td>5 0 s. d.</td>
</tr>
<tr>
<td>10. Pigskin, bevelled boards, blind, gilt edges</td>
<td>6 6 s. d.</td>
</tr>
<tr>
<td>11. Turkey morocco extra, blind, gilt edges</td>
<td>7 0 s. d.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. French morocco, blind, gilt edges</td>
<td>5 0 s. d.</td>
</tr>
<tr>
<td>16. Pigskin, bevelled boards, blind, gilt edges</td>
<td>6 6 s. d.</td>
</tr>
<tr>
<td>17. Turkey morocco extra, blind, gilt edges</td>
<td>7 6 s. d.</td>
</tr>
<tr>
<td>18. Turkey morocco limp, blind, gilt edges</td>
<td>7 6 s. d.</td>
</tr>
</tbody>
</table>

Published by Ward, Lock, and Co.
New Books and New Editions.

Dictionaries of Language.

Now Ready, New and Cheaper Edition. Demy 8vo, 634 pages, cloth, 3s. 6d.; or royal 8vo, half-bound, 5s.

Webster's Universal Pronouncing and Defining Dictionary of the English Language. Condensed from Noah Webster's Large Work, with numerous Synonyms, carefully discriminated by Chauncy A. Goodrich, D.D., Professor in Yale College. To which are added, "Walker's Key" to the Pronunciation of Classical and Scriptural Proper Names; a Vocabulary of Modern Geographical Names; Phrases and Quotations from the Ancient and Modern Languages; Abbreviations used in Writing, Printing, &c.

** This comprehensive Work is beautifully printed on good paper, in a clear and distinct type, in double columns, and has had the benefit of Revision to the Present Time.

"This Dictionary is one which must commend itself to every intelligent reader, containing, as it does, all the recently adopted words in common use up to the end of last year. Let us add, it is carefully and well printed, and very cheap; and having said so much, we feel assured that further recommendation is unnecessary. It is good, useful, and cheap."—Liverpool Mail.

THE CHEAPEST ENGLISH DICTIONARY EVER PUBLISHED.

Fcap. 4to, cloth, price 2s. 6d.

Webster's Improved Pronouncing Dictionary of the English Language. Condensed and Adapted to English Orthography and Usage, with Additions from various Accredited Sources, by Charles Robson. To which are added, Accentuated Lists of Scriptural, Classical, and Modern Geographical Proper Names.

** This carefully revised edition of Webster's great work was undertaken, at considerable outlay, by the late David Bogue, and embraces all the best points of the English and American authorities. It must supersede Johnson, Walker, Smart, Worcester, and its other predecessors. It is admirably adapted for School Use.

JOHNSON AND WALKER SUPERSEDED.

CONTAINING TEN THOUSAND MORE WORDS THAN WALKER'S DICTIONARY.

Royal 16mo, cloth, price 1s.

Price 1s., cloth.

A BOOK FOR HOME AND SCHOOL USE, equal to anything produced.

Published by Ward, Lock, and Co.
The Friendly Counsel Series.

Crown 8vo, fancy wrapper, each 1s.; cloth limp cut flush, 1s. 6d.; cloth boards, gilt, 2s.

1. Timothy Titcomb's Letters addressed to Young People, Single and Married.
3. Getting On in the World; or, Hints on Success in Life, First Series. By William Matthews, LL.D.
4. Cobbett's Advice to Young Men.
7. The Art of Prolonging Life.
 "A most valuable epitome of the art of maintaining 'a healthy mind in a healthy body; written by one who spoke with authority, from the experiences of a long, active, and useful career."—Translated from the celebrated work of Hufeland.
8. Foster's Decision of Character, and other Essays. With Life of the Author.
10. How to Excel in Business; or, The Clerk's Instructor.

Beeton's Penny Children's Books.

In handsomely coloured wrapper, crown 8vo, post free, Three Halfpence each; or the Complete Set of Six Books, post free, for 8d.

2. BEETON'S PICTORIAL SPELLING BOOK. 24 pp. Comprising Easy Words of Two Letters to Words of Seven Syllables. 43 Illustrations.
3. BEETON'S PICTORIAL PRIMER AND EASY WORD BOOK. 24 pp. Comprising Easy Words and Easy Reading Lessons from Words of Two to Six Letters. 78 Illustrations.
5. BEETON'S PICTORIAL HISTORY OF ENGLAND. 28 pp. Comprising Lessons about English Kings, Chronologically Arranged. Also List of the Kings and Queens of England, with the Dates when their Reign began and ended. 46 Illustrations.
6. BEETON'S PICTORIAL BIBLE HISTORY. 28 pp. Comprising First Lessons from Bible History, from the Fall of Adam to the time of the Apostles. 39 Illustrations.

Published by Ward, Lock, and Co.
New Books and New Editions.

The Rose Library.

Fcap. 8vo, wrapper, 1s. each; cloth gilt, 1s. 6d.; cloth gilt, gilt edges, 2s.

2. Zonon, the Roman Martyr. By the Rev. R. Cobbold, Author of "Margaret Catchpole."
4. Mary Ann Wellington. By the Author of "Margaret Catchpole."
5. The History of the Fairchild Family. By Mrs. Sherwood.
9. The Mysterious Marriage; or, Sir Edward Graham. By Catherine Sinclair. (Sequel to "Holiday House."
11. Modern Flirtations; or, A Month at Harrowgate. By Ditto.

The Home Treasure Library.

New and Handsome Volumes, price 3s. 6d. each.

1. Shiloh; or, Without and Within. By Mrs. W. M. L. Jay. With Four Coloured Illustrations.
3. Miss Edgeworth's Moral Tales. Four Coloured Illustrations.
4. Miss Edgeworth's Popular Tales. Four Coloured Illustrations.
14. Mabel Vaughan. By the Author of "The Lamplighter."

Published by Ward, Lock, and Co.
New Books and New Editions

THE CHRISTIAN YEAR.

Thoughts in Verse for the Sundays and Holydays throughout the Year.

By John Keble.

<table>
<thead>
<tr>
<th>Edition</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small fcap. 8vo, cloth gilt, plain edges</td>
<td>1d.</td>
</tr>
<tr>
<td>cloth gilt, back and side, red burnished edges</td>
<td>1½d.</td>
</tr>
<tr>
<td>gilt edges, bevelled boards</td>
<td>2½d.</td>
</tr>
<tr>
<td>calf or morocco, limp, red edges</td>
<td>5d.</td>
</tr>
</tbody>
</table>

LARGE EDITION.

<table>
<thead>
<tr>
<th>Edition</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown 8vo, toned paper, cloth gilt, plain edges</td>
<td>2½d.</td>
</tr>
<tr>
<td>with 8 full-page Illustrations, cloth gilt, red burnished edges, bevelled boards</td>
<td>3½d.</td>
</tr>
<tr>
<td>Calf, or morocco limp, red edges</td>
<td>11d.</td>
</tr>
</tbody>
</table>

LARGER EDITION.

<table>
<thead>
<tr>
<th>Edition</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown 4to, handsomely bound in cloth gilt, gilt edges, bevelled boards</td>
<td>21d.</td>
</tr>
</tbody>
</table>

The Christian Life Series.

Crown 8vo, handsomely bound, red edges, price 3s. 6d. each.

1. **The Christian Year.**
2. **Life Thoughts.** By Henry Ward Beecher. Red border lines.
3. **The Christian Life.** Bible Helps and Counsels for Every Day throughout the Year. Red border lines.
4. **Religion and Science.** By Joseph Le Conte.
5. **The Perfect Life.** By William E. Channing.

Now Ready, crown 8vo, handsomely bound in cloth, 5s.

The Christian Text Book and Birthday Remembrancer.

A Book of Sacred Counsel and Reflections for Every Day in the Year. With interleaved Pages for recording Birthdays and Registering Thoughts and Events of Every Day.

Published by Ward, Lock, and Co.
New Books and New Editions.

Beeton’s Country Books.
One Shilling Each.

* * * These books contain ample instruction for all who keep Birds, Poultry, Pigeons, Rabbits, Squirrels, Bees, Silkworms, or Dogs and Cats, and for those who are Collectors of Birds’ Nests and Eggs.

Goubaud’s Needlework Books.
Price One Shilling Each.

Tatting Patterns.
Embroidery Patterns.
Knitting and Netting Patterns.
Crochet Patterns.
Patterns of Monograms, Initials, &c.
Guipure Patterns.
Madame Goubaud’s New Crochet Patterns.
Polonaise Lace Book. By the Silkworm.
Larger Size, price Two Shillings. Patterns of Guipure d’Art.

Needlework Instruction Books, Price Sixpence.

Berlin Wool Instructions. 18 Illustrations.
Embroidery Instructions. 65 Illustrations.
Crochet Instructions.

* * * For Schools and Young Ladies at Home.

Pillow Lace.—Just ready, handsomely bound in cloth, gilt side and edges, 3s. 6d.
Madame Goubaud’s Book of Instructions in Pillow Lace Making and Pillow Lace Patterns. With numerous Illustrations printed in Mauve.

Just ready, fcap. 4to, cloth, bevelled boards, gilt edges, 10s. 6d.

Antique Point and Honiton Lace. Containing Plain and Explicit Instructions for Making, Transferring, and Cleaning Laces of every Description, with about One Hundred Illustrations, Outlines, and Pricking of the Principal Point Stitches and Honiton Sprigs. By Mrs. Treadwin.

Published by Ward, Lock, and Co.
New Books and New Editions.

Beeeton’s Humorous Books.
Price One Shilling Each.

There is but little call to laud the men who have written the books catalogued below. They have done good work—work that needs no bush; and mankind is under obligations to them for a large sum-total of enjoyment.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2. Artemus Ward: His Book</td>
<td>Artemus Ward</td>
</tr>
<tr>
<td>2</td>
<td>3. Riddles. Illustrated</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4. Burlesques. Illustrated</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5. Charades. Illustrated</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7. Saxe’s Poems</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8. Joe Miller’s Jest Book</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9. Connubial Bliss. Doughty</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10. Model Men and Model Women. Mayhew</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11. The Flirt, and Evening Parties. Albert Smith</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12. The Gent, and Stuck-up People. Albert Smith</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13. The Ballet Girl, and the Idler upon Town. Albert Smith</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15. Hearts and Trumps, Hannay; and Change for a Shilling. Mayhew</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16. Pusley; or, My Summer in a Garden. Chas. Dudley Warner</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21. Wit and Humour. Thomas Hood</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24. Innocents Abroad. Mark Twain.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27. The Siliad. By the Authors of the Coming K—</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32. Naughty Jemima.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>33. Eye Openers. By Mark Twain.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>34. Practical Jokes. Mark Twain.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>35. Screammers. By Mark Twain.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>38. Holmes’ Wit and Humour.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41. Mystery of Mr. E. Drood. By Orpheus C. Kerr.</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42. Shaving Them. By Titus A. Brick.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>43. Mr. Brown on the Goings on of Mrs. Brown.</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>44. Sensation Novels.</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>45. Little Breeches.</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>46. Mr. Sprouts: His Opinions.</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>47. Lothair.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>48. Ramsbottom Papers.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>49. Major Jack Downing.</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>50. The Pagan Child, and other Sketches.</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1. It is Never Too Late to Mend. 2s. 6d.</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>2. Hard Cash, 2s. 6d.</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3. Peg Woffington. 2s.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>4. Christie Johnstone. 2s.</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>5. Griffith Gaunt. 2s. 6d.</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>6. Double Marriage; or, White Lies. 2s. 6d.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>7. Love me Little, Love me Long.</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>All the above are also done in cloth, gilt binding, each 3s. 6d.</td>
<td></td>
</tr>
</tbody>
</table>
New Books and New Editions.

The Youth's Library of Wonders & Adventures.

JULES VERNE'S STARTLING STORIES, with Coloured Pictures.

"Terribly thrilling and absolutely harmless."—The Times.

Price One Shilling per Volume, in picture wrappers; cloth gilt, 2s.

1. A Journey into the Interior of the Earth.
2. The English at the North Pole.
3. The Ice Desert.
4. Five Weeks in a Balloon.
5. The Mysterious Document.

With Three Coloured Pictures to each Volume.

DOUBLE VOLUMES. Crown 8vo, picture boards, 2s.; cloth gilt, 3s. 6d.; cloth gilt, gilt edges, 3s. 6d.

IMPORTANT SERIES OF NEW AND POPULAR BOOKS.

Price One Shilling per Volume; nicely bound in cloth gilt, 2s.

The Country House Library

OF FICTION, TRAVEL, ESSAY, BIOGRAPHY, &c.

By the First Authors of the Day. Copyright Editions.

These Works will be exclusively by the First Authors of the Day, and Copyright. Each volume in the Series will be sold at the price of One Shilling—a price at which so much new and original matter of such high quality has not only never yet been offered in this country, but which price has never even been approached.

1. The Mad Willoughbys, and other Tales. By Mrs. LYNN LINTON, Author of "Joshua Davidson," "Patricia Kemball," &c.
5. No Sign, and other Tales. By Mrs. CASHEL HOEY.
6. Grace Tolmar. By JOHN DANGERFIELD.

Published by Ward, Lock, and Co.
New Books and New Editions.

The Boys' Favourite Library.

Price 3s. 6d. each, Illustrated.

Boys love to read the records of adventurous deeds, to trace the careers of brave and good lads who have attained to eminence, and to be told of wonderful natural objects. The volumes in this series furnish the literary food most acceptable to intelligent and spirited boys, and most calculated to develop their best qualities.

2. Fifty Celebrated Men; Their Lives and Trials, and the Deeds that made them Famous. Illustrated with numerous Wood Engravings.
4. The History of Sandford and Merton. By Thomas Day. Illustrated with 100 Engravings by the Brothers Dalziel.
5. A Boy's Life Aboard Ship, as it is Told by Himself. Full of Adventure and Daring Deeds.
7. Great Inventors: The Sources of their Usefulness, and the Results of their Efforts. Embellished with numerous Engravings.
10. The Boy's Book of Industrial Information. By Elisha Noyce. With 365 Engravings by the Brothers Dalziel.

Published by Ward, Lock, and Co.
The Boys' Favourite Library, continued.

17. Pyrotechny; or, The Art of Making Fireworks at little Cost, and with complete Safety and Cleanliness. With 124 Illustrations of Forms and Diagrams for Manufacture and Exhibition.

19. Poe's Tales of Mystery, Imagination, and Humour.

20. Ballads and Poetical Tales. Selected from Percy, Ritson, Evans, Jamieson, Scott, &c. &c.

Beeton's Penny Books.

The sale of this very popular Series of Useful Penny Books is enormous.

All these Books are most carefully written, and contain complete information upon every subject within their province.

1. Life of the Prince of Wales, comprising all the Events in the Career of His Royal Highness, from his Birth to the Present Day.
2. Beeton's Penny Cookery Book.
5. Beeton's Penny County Court Book.
15. Beeton's Penny Nine Hours' Wages Book.
18. Ditto. No. 3. For Cook and Housemaid.
20. Beeton's Penny Cab Fares.
21. Everybody's Penny Table Book.

Published by Ward, Lock, and Co.
New Books and New Editions.

The Girls' Favourite Library.

Price 3s. 6d. each, Illustrated.

These are all books which have gained a reputation for combining deep interest and amusement with pleasantly conveyed instruction. They are really "favourites"; books which Girls will read and preserve as indispensable to the Library of the School or the Home.

2. Evenings at Home; or, The Juvenile Budget Opened. Consisting of a variety of Miscellaneous Pieces, for the Instruction and Amusement of Young Persons. By Dr. Aiken and Mrs. Barbauld.
4. Bunyan's Pilgrim's Progress (from this World to that which is to Come). A New Edition, with a Memoir. Illustrated with 100 Engravings by the Brothers Dalziel.
5. Orange Blossoms. A Book for all who have worn, are wearing, or are likely to wear them. Edited by T. S. Arthur. With Illustrations.
8. Margaret Catchpole, the Suffolk Girl. By the Rev. R. Cobbold.
15. Queechy. By the Author of "The Wide, Wide World."
17. Uncle Tom's Cabin; or, Life Among the Lowly. By Mrs. Harriet Beecher Stowe. Illustrated.
19. Mothers of Scripture. Showing their Influence on their Sons.
20. The School-Girl in France. By Miss McCrindell.

Published by Ward, Lock, and Co.
New Books and New Editions.

"Our Little Ones'" Library.
Price 35. 6d. each, Illustrated.

AN ENTIRELY NEW WORK BY SUSAN COOLIDGE.

1. Little Miss Mischief, and other Stories. By SUSAN COOLIDGE, Author of "The New Year's Bargain," "What Katy Did," &c. With Illustrations by ADDIE LEDYARD.

4. Story of Stories (The); or, Bible Narratives for the Young. By Mrs. LEATHLEY, Author of "Chickseed without Chickweed." Beautifully Illustrated with full-page Engravings. 416 pages.

5. The Child's Own Book of Country Pleasures. Sixteen Coloured and numerous other Illustrations.

7. Good Old Stories and Fairy Tales. Told for the Hundredth Time by H. W. DULCKEN, Ph.D. Eight Coloured and numerous other Illustrations.

8. Old Nursery Tales and Famous Histories. Re-told by H. W. DULCKEN, Ph.D. Illustrated with Eight Coloured and numerous other Illustrations.

10. Songs for the Little Ones at Home. Coloured and other Illustrations.

11. Half-Hours with the Bible; or, Scripture Scenes and Characters: described in a simple and attractive form, suitable for Young People. Beautifully and profusely illustrated with Engravings.

12. Brave Old Ballads (The Book of). With Sixteen Coloured Illustrations, from designs by JOHN GILBERT.

14. Little Mary's Nursery Story Book. Imperial 16mo, numerous Illustrations.

17. Nursery Rhymes, Old and New. A Collection of all the most Favourite Nursery Rhymes, Jingles, and Stories; also many New Ones now for the first time printed. Imperial 32mo. Numerous clever Illustrations.

Published by Ward, Lock, and Co.
Favorite Authors, British and Foreign

Price 2s. Each

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Leah, the Jewish Maiden.</td>
<td>W. S. Mayo, author of “Never Again.”</td>
</tr>
<tr>
<td>4.</td>
<td>Margaret Catchpole, the Suffolk Girl.</td>
<td>Rev. R. Cobbold, author of “Margaret Catchpole.”</td>
</tr>
<tr>
<td>5.</td>
<td>Zana the Gipsy, or the Heiress of Clare Hall.</td>
<td>Miss Stevens, author of “Fashion and Famine.”</td>
</tr>
<tr>
<td>10.</td>
<td>The Berber, or the Mountainiers of the Atlas.</td>
<td>W. S. Mayo, author of “Never Again.”</td>
</tr>
<tr>
<td>11.</td>
<td>The Improvisatore.</td>
<td>H. C. Andersen. Translated by Mary Howitt.</td>
</tr>
<tr>
<td>18.</td>
<td>Unrequited Affection, or Daddy Goriot.</td>
<td>Honoré de Balzac.</td>
</tr>
<tr>
<td>19.</td>
<td>The Suffolk Gipsy, or John Steggall.</td>
<td>Rev. R. Cobbold, author of “Margaret Catchpole.”</td>
</tr>
<tr>
<td>23.</td>
<td>The Mountain Marriage; or the Bandolero.</td>
<td>Captain Mayne Reid, author of “The Headless Horseman,” &c.</td>
</tr>
<tr>
<td>29.</td>
<td>By the King’s Command.</td>
<td>Victor Hugo, author of “Les Misérables.”</td>
</tr>
<tr>
<td>30.</td>
<td>The American.</td>
<td>Henry James, Jnr.</td>
</tr>
<tr>
<td>31.</td>
<td>The Conspirators; or Cinquant.</td>
<td>A. de Vigny.</td>
</tr>
</tbody>
</table>

To Students, Teachers, & all seeking Self-Education, Knowledge, & Improvement,

Complete in Four Volumes, strongly bound, half roan, price 42s.

THE PEOPLE'S TWO-GUINEA CYCLOPAEDIA,

BEETON'S DICTIONARY OF UNIVERSAL INFORMATION.

VOLUME I.

Beeton's Dictionary of Universal Information—Geography, History, and Biography, A to H. Containing 936 pages, about 15,000 distinct articles alphabetically arranged, 60 separate Tinted Plates of Views and Portraits, and 7 large Coloured Maps—viz., Africa, North America, South America, Asia, Australia, China, and Europe.

"This is a biographical, historical, and geographical Dictionary combined, well illustrated, and corrected up to the present hour; the articles are full, trustworthy, and remarkable for condensation. . . . Many thousand headings not to be found in previous Dictionaries have been inserted, many errors corrected, and statistics collated with the latest information. We know of no other book of reference more valuable or trustworthy on the subject it treats.—Standard.

VOLUME II.

Beeton's Dictionary of Universal Information—Geography, History, and Biography, I to Z. Containing 860 pages, about 15,000 distinct articles, alphabetically arranged, 53 separate Tinted Plates of Views and Portraits, and 5 large Coloured Maps—viz., France, German Empire, India, Italy, and Turkish Empire.

"A marvel of condensation, containing in comparatively small compass a perfect mine of information under the three great heads of Geography, History, and Biography. The maps are admirable."—Leeds Mercury.

"We know of no book which in such small compass gives so much information. The maps are excellent, and the whole book is got up in good and clear style."—Scotsman.

Volumes I. and II. give compact and Authentic Information respecting the Physical and Political Geography, Situation, Population, Commerce, and Productions, and the principal Public Buildings of every Country and important or interesting Town in the World, and the leading Historical Events with which they have been connected; concise Biographies of Eminent Personages from the most remote times to the present; Egyptian, Greek, Roman, Oriental, and Scandinavian Mythology, and Pronunciation of Names. Enlarged, Corrected, and Revised by George R. Emerson.

*** Volumes I. and II. can be had separately from the Volumes relating to Science, &c., price 21s.

VOLUME III.

Beeton's Dictionary of Universal Information—Science, Art, and Literature, A to G. Containing 1000 pages and 2000 columns, with 68 separate Tinted Plates, and several Hundred Engravings in the text. In this volume will be found carefully drawn and elaborately engraved representations of Machines and other subjects.

"The plates are good and clear, and we are pretty certain that no book with nearly as much miscellaneous and valuable information can be procured in this country at the price."—Glasgow Herald.

"It is a very handy and useful work, containing a great amount of valuable information."—Scotsman.

VOLUME IV.

Beeton's Dictionary of Universal Information—Science, Art, and Literature, H to Z. Containing 1044 pages, 2088 columns, with 63 separate Tinted Plates, and several Hundred Engravings in the text. In this volume will be found carefully drawn and elaborately engraved representations of Machines and other subjects.

"The quantity of information contained in this work is enormous, and the quality, judging from a careful inspection, is of the first class. The Illustrations are numerous and useful."—Daily News.

"A marvel of condensed information upon scientific subjects of all kinds and sorts."—Standard.

Volumes III. and IV. comprise a complete summary of the Moral, Mathematical, Physical, and Natural Sciences; a plain description of the Arts; an interesting Synopsis of Literary Knowledge, with the Pronunciation and Etymology of every leading term.

*** Volumes III. and IV. can be had separately from the Volumes relating to Geography, &c., price 21s.

London: WARD, LOCK, & CO.,
Warwick House, Dorset Buildings, Salisbury Square, E.C.
SYLVIA'S

"We have never seen any Magazine approaching it for variety of contents and meritorious worth."—Sheffield Post.

HOME JOURNAL.

<table>
<thead>
<tr>
<th>Price</th>
<th>6d.</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Containing TALES, STORIES, FASHIONS, NEEDLE WORK, &c., &c.</td>
</tr>
</tbody>
</table>

| Price | 6d. | Monthly |

TERMS OF SUBSCRIPTION:
Yearly, 8s.; Half-yearly, 4s.; Quarterly, 2s.

LONDON: WARD, LOCK, & CO., WARWICK HOUSE, DORSET BUILDINGS, SALISBURY SQUARE, E.C.
JUDSON'S 6d.
SIXPENCE Per Bottle. DYES.

SOLD BY CHEMISTS & STATIONERS.

MAGENTA	MAROON	PINK	BLACK
MAUVE	BUFF	GREEN	LAVENDER
VIOLET	CERISE	CLARET	SLATE
PUCE	SCARLET	RUBY	GREY
PURPLE	ORANGE	CRIMSON	PONCEAU
CANARY	BLUE	MAUVE	LILAC
		FINK	
		GREEN	
		CLARET	
		RUBY	
		CRIMSON	
		MAUVE	
		FINK	

TESTIMONIAL

Sir,—Your "Simple Dyes for the People" only require a trial to be duly appreciated. I have used them for some length of time, and recommended them to many friends, who, with myself, find in them an item of the highest economy. Having been successful with the smaller articles, I tried the larger, and now dye all at home—viz., Curtains, Table-Covers, Dresses, &c.—with the most satisfactory results.
March 18, 1875.

W. B. A.

Use a Bottle of Dye in a Pailful of Boiling Water.

The following Articles may be Dyed in a few minutes in a Basin of Boiling Water, viz.:

FEATHERS	COTTON	IVORY
HORSEHAIR	WOOD	BONE
LEATHER	HEMP	HORN
WOOL	JUTE	WHALEBONE
SILK	SEAWEED	BASKET WORK

ARTIFICIAL FLOWERS, EVERLASTING FLOWERS AND GRASSES, WILLOW SHAVINGS, CROQUET BALLS, &c.

SEE THAT YOU GET JUDSON'S DYES.