Table 1. Rates of autogeny in four generations of *Aedes polynesiensis* Marks from Fiji.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Number of Females</th>
<th>Number of Autogenous Eggs</th>
<th>Number of Females Autogenous upon Dissection</th>
<th>%_Autogenuss</th>
<th>N_egg (S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>21</td>
<td>6</td>
<td>54.00</td>
<td>12.86 (1.45)</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>3</td>
<td>1</td>
<td>8.00</td>
<td>7.00 (2.40)</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2</td>
<td>*</td>
<td>18.18</td>
<td>15.50 (3.18)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>*</td>
<td>25.00</td>
<td>16.00 (N/A)</td>
</tr>
</tbody>
</table>

* No females were dissected in the third and fourth generations.

As mentioned above, it appeared that the viability of the autogenous eggs was less than should be expected. During the course of the experiment, about 40% of the eggs hatched. Again, because the strain is well established in the laboratory, it is unlikely that the autogenous females produce eggs with a similarly low rate of hatch. So, it is believed that the autogenous eggs have a lower rate of hatch than eggs produced by anautogenous females.

In summary, autogeny has been found to be present in a strain of *Ae. polynesiensis* from Fiji. A great deal of variation was seen in the percentage of the females in the population which produced eggs autogenously. In addition, autogenous females appeared to produce far less than a full batch of eggs, and the eggs are believed to have a comparatively low rate of hatch.

Acknowledgments: I would like to thank Dr. Milan Trpis for helpful discussions during the course of the experiment and during the preparation of the manuscript. I would also like to thank Mr. Barry Engber and Ms. Karen Toolley for their roles in obtaining the mosquitoes used in this study.

Literature Cited

THE POTENTIAL USE OF LARVAE OF *CHAOBORUS COOKI* SAETHER (DIPTERA: CHAOBORIDAE) AS A BIOLOGICAL CONTROL OF MOSQUITO LARVAE

A. BORKENT

Department of Biology, Carleton University, Ottawa, Ontario, Canada, K1S 5B6

The predaceous larvae of *Chaoborus* species are planktonic and capture organisms by hanging motionless in the water column and lashing out sideways at passing prey. Larvae in ponds feed on such invertebrates as chironomid and culicid larvae, cladocerans and copepods.

The potential use of *Chaoborus* larval as biological control agents of mosquito larvae has been investigated both in the laboratory and in nature (James and Smith 1958, Monchadsky 1964, Nikolaeva 1979, Satter and Lienk 1954, Skierska 1969, 1974, Twinn 1931). Because most species are restricted to permanent water where large numbers of pest mosquito species rarely occur, these are of limited use as a biological control.

During a revision of *Skeadosaphesma* (Chaoborus), Borkent (1979) discovered that *Chaoborus cooki* overwintered in the egg stage in seasonally temporary woodland ponds in the Nearctic region. In Alberta, Canada, 1st instar larvae hatched in early spring while surface ice still formed overnight, generally about the 2nd
or 3rd week of May. These larvae reached adulthood by late June or early July. Females produced desiccation resistant, diapausing eggs with a highly sculptured exochorion, obvious adaptations to temporary pond existence. This apparently unique adaptation (shared by C. nyhuet, a Palaeartic species) in the genus places larvae of C. cooki in the same habitat as some mosquito species and especially those of the genus Aedes.

I was able to observe both in nature and the laboratory that C. cooki larvae readily consume culcid larvae. For example, at a site 1.6 km south of Jasper, Alberta a mosquito hatch was directly observed to be devoured by C. cooki larvae and subsequent sampling of the pond failed to reveal any mosquito larvae.

Predation of mosquito larvae was observed throughout the study period (3 yrs.) in early spring and after heavy rains in a number of localities in Alberta (Borkent 1979). I regularly collected C. cooki at those times with mosquito larvae in their crops.

The purpose of this paper is to point out the potential use of C. cooki larvae as a biological control of those early season mosquitoes which occur in the boreal areas of temperate regions. Only the basics of the life cycle were determined by Borkent (1979), and many more data need to be obtained before any practical application can be made of C. cooki. Numbers of mosquitoes consumed, duration of each larval instar, effectiveness of predation at varying prey densities, adult behavior and the nature of egg diapause are all aspects which need to be investigated. It is hoped therefore, that some researcher or organization will be able to further investigate the potential of C. cooki.

Acknowledgments. I thank Dr. D. A. Craig for discussing with me the ideas in this paper and Dr. D. M. Wood for critically reading the manuscript.

References Cited

ELAPHRUS CUPREUS Dusch. (COLEOPTERA, CARABIDAE), A PREDATOR OF THE PUPAE OF BITING MIDGE (DIPTERA, CERATOPOGONIDAE)

J. P. RIEB, J. C. DELECOLLE AND M. KREMER

Institut de Parasitologie, Faculté de Médecine de Strasbourg (France)

Very few observations on insect predators of ceratopogonid pupae have been reported. In his review of literature of natural enemies of biting midges, Wirth (1977) cites only one case: Yasench (1974) observed in Trinidad (West Indies), adults of the tiger-beetle Cicindela nutans E. feeding on pupae and adults of Ceratopogonides phlebopterus (Williston).

At a breeding place near Ichtratzheim (France), consisting of a mud-bank next to a river, where we are studying the spatial distribution of biting-midge larvae, we noticed that the number of Cicindelidae which emerged was more than 3 times lower than that obtained from mud samples kept in the laboratory (Rieb & Kremer). We considered that the activity of a predator could explain partly the diminution of the yield in the field. During the summer of 1979, we discovered by careful observations, the presence of a beetle: Elaphrus cupreus Dusch. It is found on the surface of mud, in