
USER
MANUAL
AND
REPORT
SECOND EDITION

Kathleen Jensen
Niklaus Wirtfi

Springer-VBflag
New York Heidelberg Berlin

V)y"i'e(ne

C?-//

^■OSIootein

PASCAL
User Manual
and Report
Second Edition

Kathleen Jensen
Niklaus Wirth

SPRINGER-VERLAG

New York Heidelberg Berlin

Ms. Kathleen Jensen
Prof. Dr. Niklaus Wirth
Institut fur Informatik
ETH Zurich
Clausiusstrasse 5
CH-8006 Zurich

AMS Subject Classifications (1970): 68-02, 68A05
CR Subject Classifications (1974): 4.2, 4.22

Library of Congress Cataloging in Publication Data

Jensen, Kathleen, 1949-
PASCAL: user manual and report.

“Springer study edition.”
Bibliography: p.
Includes index.
1. PASCAL (Computer program language)

I. Wirth, Niklaus, joint author. II. Title.
QA76.73.P35J46 1975 016.6'424 75-16462
ISBN 0-387-90144-2

Corrected Printing, 1978.

All rights reserved.

No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag.

© 1974 by Springer-Verlag Berlin Heidelberg New York

Printed in the United States of America

25 24 23 22 21

ISBN 0-387-90144-2 Springer-Verlag New York Heidelberg Berlin

ISBN 3-540-90144-2 Springer-Verlag Berlin Heidelberg New York

PREFACE

A preliminary version of the programming language Pascal was
drafted in 1968. It followed in its spirit the Algol-60 and
Algol-W line of languages. After an extensive development phase,
a first compiler became operational in 1970, and publication
followed a year later (see References 1 and 8, p.104). The
growing interest in the development of compilers for other
computers called for a consolidation of Pascal, and two years of
experience in the use of the language dictated a few revisions.
This led in 1973 to the publication of a Revised Report and a
definition of a language representation in terms of the ISO
character set.

This booklet consists of two parts: The User Manual, and the
Revised Report. The Manual is directed to those who have
previously acquired some familiarity with computer programming,
and who wish to get acquainted with the language Pascal. Hence,
the style of the Manual is that of a tutorial, and many examples
are included to demonstrate the various features of Pascal.
Summarising tables and syntax specifications are added as
Appendices. The Reo nrt is included in this booklet to serve as a
concise, ultimate reference for both programmers and
implementors. It defines Standard Pascal which constitutes a
common base between various implementations of the language.

The linear structure of a book is by no means ideal for
introducing a language. Nevertheless, in its use as a tutorial,
we recommend to follow the given organization of the Manual,
paying careful attention to the example programs, and then to
reread those sections which cause difficulties. In particular,
one may wish to reference chapter 12, if questions arise
concerning input and output conventions.

Chapters 0-12 of the Manual, and the entire Report, describe
Standard Pascal. An implementor should regard the task of
recognising Standard Pascal as the basic requirement of his
system, whereas the programmer who intends his programs to be
transportable from one computer to another should use only
features described as Standard Pascal. Of course, individual
implementations may provide additional facilities which,
however, should be clearly labelled as extensions.

Chapters 13 and 14 of the Manual document the implementation of
Pascal on the Control Data 6000 computer. Chapter 13 describes
the additional features of the language called Pascal 6000-3.4.
Chapter 14 is devoted to the use of the compiler under the

operating system SCOPE 3.4 .

The efforts of many go into this manual, and we especially thank
the members of the Institut fuer Infor'matik, ETH Zurich, and
John Larmouth, Rudy Schild, Olivier Lecarme, and Pierre
Desjardins for their criticism, suggestions, and encouragement.
Our implementation of Pascal—which made this manual both
possible and necessary—is the work of Urs Ammann, aided by
Helmut Sandmayr,

Kathleen Jensen
Niklaus Wirth
ETH Zurich
Switzerland Nov. 1974

Table of Contents

USER MANUAL by K.Jensen and N.Wirth

0. Introduction . 3

1 . Notation and Vocabulary. 9

2. The Concept of Data. 12
A. The type Boolean. 12
B. The type integer. 13
C. The type real. 14
D. The type char. 14

3. The Program Heading and the Declaration Part. 16
A. The program heading. 16
B. The label declaration part. 16
C. The constant definition part. 16
D. The type definition part. 18
E. The variable declaration part. 18
P. The procedure and function declaration part. 19

4. The Concept of Action. 20
A. The assignment statement. 20
B. The compound statement. 21
C. Repetitive statements . 22

C.1 The while statement. 22
C.2 The repeat statement. 23
C. 3 The for statement. 23

D. Conditional statements. 26
D, 1 The if statement. 26
D.2 The case statement. 31

E. The goto statement. 31

5. Scalar and Subrange Types. 34
A. Scalar types. 34
B. Subrange types. 35

6. Structured Types in General — The Array in Particular ... 36

7. Record Types. 42
A. The with statement. 47

8. Set Types. 50

9. Pile Types. 55
A. Textfiles. 57
B. The standard files ’’input" and "output". 59

10. Pointer Types. 62

11. Procedures and Punctions. 67
A. Procedures. 67
B. Punctions. 78
C. Remarks. 82

12. Input and Output. 84
A. The procedure read. 84
B. The procedure write. 86

13. PASCAL 6000-3.4. 88
A. Extensions to the language Pascal. 88

A.1 Segmented files. 88

A. 2 External procedures . 90
B. Specifications left undefined in the preceding chapters . 91

B. 1 The program heading and external files. 91
B.2 Representation of files. 92
B.3 The standard types. 93
B. 4 The standard procedure write. 96

C. Restrictions. 97
B. Additional predefined types, procedures, and functions. . 97

D.1 Additional predefined types . 97
I).2 Additional predefined procedures and functions. ... 98

14. How to Use the PASCAL 6000-3.4 System. 100
A. Control statements. 100
B. Compiler options. 100
C. Error messages. 102

C. 1 Compiler. 102
C.2 Run-time. 102

References. 104

Appendix A Standard Procedures and Functions . 105
Appendix B Summary of Operators. 108
Appendix C Tables. 109
Appendix I) Syntax. 110
Appendix E Error Number Summary. 119
Appendix F Programming Examples. 122

Index. 126

REPORT by N.Wirth

1. Introduction. 133

2. Summary of the language. 134

3. Notation, terminology, and vocabulary. 137

4. Identifiers, Numbers and Strings . 137

5. Constant definitions . 138

6. Data type definitions. 139
6.1. Simple types. 139
6.2. Structured types. 140
6.3. Pointer t;^'pes. 142

7. Declarations and denotations of variables. 143
7.1. Entire variables. 144
7.2. Component variables . 144
7.3. Referenced variables. 145

8. Expressions. 145
8.1. Operators. 146
8.2. Function designators. 148

9. Statements. 148
9.1. Simple statements . 149
9.2. Structured statements . 150

10. Procedure declarations . 155
10.1.Standard procedures . 157

11. Function declarations. 159
11 .1 .Standard functions.

12. Input and Output... 161

13. Programs. 164

14. A standard for implementation and program interchange. . . 165

15. Index.’. 166

User Manual

0
INTP.D.DiiCII.QN

Much of the following text
grasp of computer terminology
of a program. The purpose
intuit ion •

assumes the reader
and a "feeling** for
of this section is

has a minimal
the structure
to spark that

{ program 0.1
assuming annual inflation rates of 7, 8, and 10 per cent,
find the factor by which the frank, dollar, pound
sterling, mark, or guilder will have been devalued in
1. 2 , ... n years .}

program inflation(output);

const n * 10;
var i : integer; w1,w2,w3

begin i : *= 0 ; w 1 ; *

repeat i :« i+1;
w 1 :ssw1 * 1.07
w2 ;s w2 * 1.08
w3 ;* w3 * 1.10
writeln(i,w1,w2,w3)

onLlI l»n
and.

; real;
w2 := 1.0; w3 1.0;

1 1.070000000000e+00
2 1 . 144900000000e + 00
3 1.225043000000e+00
4 1.310796010000e+00
5 1.402551730700e+00
6 1 *500730351849e + 00
7 1..60578l476478e+00
8 1.718l86179832e + 00
9 1.838459212420e+00

10 1.967151357290e+00

1.080000000000e + 00
1.1664000000006+00
1.2597120000006+00
1.3604889600006+00
1.4693280768006+00
1.. 586874322944e + 00
1.. 713824268779e + 00
1.850930210282e+00
1.999004627104e+00
2.1589249972736+00

1.1000000000006+00
1.2100000000006+00
1.3310000000006+00
1,4641000000006+00
1.6105100000006+00
1.7715610000006+00
1.9487171000006+00
2.1435888100006+00
2.3579476910006+00
2.5937424601006+00

An algorithm or computer program consists of two essential
parts, a description of act ions which are to be performed, and a
description of the data, which are manipulated by these actions.
Actions are described by so-called statements , and data are
described by so-called declarations and definitions,

The program is divided into a heading* and a body, called a
hlnnk - The heading gives the program a name and lists its
parameters. (These are (file) variables and represent the
arguments and results of the computation. See chapter 13.) The
file "output" is a compulsory parameter. The block consists of
six sections, where any except the last may be empty. In the
required order they are;

4

<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procedure and function declaration part>
otatement part>

The first section lists all labels defined in this block. The
second section defines synonyms for constants; i .e. it
introduces identifiers that may later be used in place of those
constants. The third contains type definitions; and the fourth,
variable definitions. The fifth section defines subordinate
program parts (i.e. procedures and functions). The statement
part specifies the actions to be taken.

The above program outline is more precisely expressed in a
syntax diagram . Starting at the diagram named program, a path
through the diagram defines a syntactically correct program.
Each box references a diagram by that name, which is then used
to define its meaning. Terminal symbols (those actually written
in a Pascal program) are in rounded enclosures. (See appendix D
for the full syntax diagram of Pascal.)

5

program

identifier -Ot •• identifier rOy^CDH [■
-o-

block

-(lade^- \ unsigned integer
^ ♦

. 9
-(CQNSI^- identifier

<D-
">^TYPE^ identifier -0^3’

-O-
>^var)- identifier

—CD- 1
/Ou_

(PROCEDURE E)-^

block
-©-

identifier parameter list

■>^UNCTIO^-» identifier - parameter list -o- type identifier

►^BEGIN^ _^ stcitcmcnt

_

Figure O.a Syntax diagrams defining the
general structure of a program

6

An alternative formulation of a syntax is the traditional
£ja.Cki^S~Natir .Fiarm ? where syntactic constructs are denoted by
English words enclosed between the angular brackets < and >,
These words are suggestive of the nature or meaning of the
construct. Enclosure of a sequence of constructs
by the meta - brackets { and } implies their repetition
zero or more times. (For the BNF of Pascal, see appendix D.) As
an example, the construct <program> of figure 0.a is defined by
the following formulas, called “productions'';

<program> <program heading> <block> ,
<program heading> program <identifier> (<file identifier>

{, <file identifier>}) ;
<file identifier> <identifier>

Each procedure (function) has a structure similar to a program;
i.e, each consists of a heading and a block. Hence, procedures
may be declared (nested) within other procedures. Labels,
constant synonyms, type, variable, and procedure declarations
are jl.Qcal to the procedure in which they are declared. That is,
their identifiers have significance only within the program text
which constitutes the procedure declaration and which is called
the SmCOP s of these identifiers. Since procedures may be nested,
so may scopes. Objects which are declared in the main program,
i.6, not local to some procedure, are called global and have
significance throughout the entire program.

Since blocks may be nested within other blocks by procedure and
function declarations, one is able to assign a level of nesting
to each. If the outermost, program-defined block (e.g. the main
program) is called level 0, then a block defined within this
block would be of level 1; in general, a block defined in level
i would be of level (i+1). Figure 0,b illustrates a block
stru cture.

level 0

level 1
level 2
level 3

M

p, Q
A, R, S
B

7

In terms of this formulation the scope or range of validity of
an identifier x is the entire block in which x is defined,
including those blocks defined in the same block as x . (For this
example, note that all identifiers must be distinct. Section 3 .e
discusses the case where identifiers are not necessarily
distinct •)

objects defined in block are accessible in blocks

M ,P ,A ,B ,Q ,R .S
P .A ,B
A.B
B

Q ,R .S
R
S

M
P
A
B
Q
R
S

For programmers acquainted with ALGOL, PL/I, or FORTRAN, it may
prove helpful to glance at Pascal in terms of these other
languages. For this purpose, we list the following
characteristics of Pascal:

1. Declaration of variables is mandatory.
2. Certain key words (e.g, begin - end, reo eat) are

"reserved** and cannot be used as identifiers. In this
manual they are underlined,

3. The semicolon (;) is considered as a statement separator,
not a statement terminator (as e.g, in PL/I),

4. The standard data types are those of whole and real
numbers, the logical values, and the (printable)
characters. The basic data structuring facilities include
the array, the record (corresponding to COBOL's and
PL/I 's **structure *') , the set, and the (sequential) file.
These structures can be combined and nested to form
arrays of sets, files of records, etc. Data may be
allocated dynamically and accessed via pointers. These
pointers allow the full generality of list processing.
There is a facility to declare new, basic data types with
symbolic constants ,

5. The 3et data structure offers facilities similar to the
PL/I “bit string**.

6. Arrays may be of arbitrary dimension with arbitrary
bounds: the array bounds are constant, (i.e. There are no
dynamic arrays.)

7. As in FORTRAN, ALGOL, and PL/I , there is a go to
statement . Labels are unsigned integers and must be
declared ,

6. The compound statement is that of ALGOL , and corresponds
to the DO group in PL/I ,

9. The facilities of the ALGOL switch and the computed go to
of FORTRAN are represented by the case statement.

10, The for statement, corresponding to the DO loop of
FORTRAN, may only have steps of 1 (ill) or -1 f downto) and
is executed only as long as the value of the control
variable lies within the limits. Consequently, the
controlled statement may not be executed at all.

8

11. There are no conditional expressions and no multiple
assignments .

12, Procedures and functions may be called recursively.
13. There is no **own ** attribute for variables (as in ALGOL),
14, Parameters are called either by value or by reference;

there is no call by name.
15. The “block structure*' differs from that of ALGOL and PL/I

insofar as there are no anonymous blocks, i .e. each block
is given a name, and thereby is made into a procedure.

16, All objects—constants, variables, etc.—must be declared
they are referenced. The following two exceptions

are however allowed :
1) the type identifier in a pointer type definition
(chapter 10)

2) procedure and function calls when there is a forward
reference (chapter 11).

Upon first contact with Pascal, many tend to bemoan the absence
of certain “favorite features**. Examples include an
exponentiation operator , concatenation of strings , dynamic
arrays , arithmetic operations on Boolean values , automatic type
conversions, and default declarations. These were not
oversights, but deliberate omissions. In some cases their
presence would be primarily an invitation to inefficient
programming solutions; in others, it was felt that they would be
contrary to the aim of clarity and reliability and “good
programming style“. Finally, a rigorous selection among the
immense variety of programming facilities available had to be
made in order to keep the compiler relatively compact and
efficient—efficient and economical for both the user who writes
only small programs using few constructs of the language and the
user who writes large programs and tends to make use of the full
language .

1

NflIATIQN tm VOCABULARY

The basic vocabulary consists of basic symbols classified into
letters, digits, and special symbols. The special symbols are
operators and delimiters:

+ : (aiul S,dA nil aoL

-) array LllS. nof fhan
* = [Lqxl nf t.a
/ <>] case function an fYQ£
ss < {

}
£pnst goto packed until

• < = if procedure Y.aii
. > = t sla in program

> • • downto
else

lah£.l

mojl

record
r eoeat

WjBUdnjelimiters (or reserved words) are normally underlined in
the hand-written program to emphasize their interpretation as
single symbols with fixed meaning. The programmer may not use
these words in a context other than that explicit in the
definition of Pascal; in particular, these words may not be used
as identifiers. They are written as a sequence of letters
(without surrounding escape characters).

The construct :

{ <any sequence of symbols not containing **} ’*>}

may be inserted between any two identifiers , numbers , or special
symbols. It is called a comment and may be removed from the
program text without altering its meaning. The symbols { and }
do not occur otherwise in the language, and when appearing in
syntactic descriptions, they denote meta-symbols like 1 and
(On systems where the curly brackets are unavailable, the
character pairs (* and *) are used in their place.)

are names denoting constants, types, variables,
procedures, and functions. They must begin with a letter, which
niay be followed by any combination and number of letters and
digits. Although an identifier may be very long, implementations
may impose a limit as to how many of these characters are
significant. Implementations of Standard Pascal will always
recognise the first 8 characters of an identifier as
significant. That is, identifiers denoting distinct objects
should differ in their first 8 characters.

10

examples of legal identifiers ;
sum root3 pi h4g x
thisisaverylongbutneverthelesslegalidentifier
thisisaverylongbutprobablythesameidentifierasabove

illegal identifiers:
3rd array level.4 root-3

Certain identifiers, called standard identifiers . are predefined
(e.g. sin, cos). In contrast to the word-delimiters (e.g.
array). one is not restricted to this definition and may elect
to redefine any standard identifier, as they are assumed to be
declared in a hypothetical block surrounding the entire program
block .

Decimal notation is used for numbers , The letter E preceding the
scale factor is pronounced as **times 10 to the power of**. The
syntax of unsigned numbers is summarized in figure 1 .b .

Note that if the number contains a decimal point, at least one
digit must precede and succeed the point. Also, no comma may
occur in a number .

unsigned numbers:
3 03 6272844 0.6 5E-8 49.22E+08 1E 10

11

incorrectly written numbers:
3,467.159 XII .6 E 10 5.E-16

Blanks , ends of lines , and
separators . An arbitrary number
any two consecutive Pascal symbo
no separators may occur within
symbols . However . at least one
pair of consecutive identifiers.

comments are considered as
of separators may occur between

Is with the following exception:
identifiers . numbers . or special
separator must occur between any

numbers . or word symbols •

Sequences of characters enclosed by single quote marks are
called strings . To include a quote mark in a string, one writes
the quote mark twice.

examples of strings:
a ; 3 begin don t

this string has 33 characters

2

Iii£ .C,Q,N.CEPT HE DATA

Data is the general expression describing all that is operated
on by the computer. At the hardware and machine code levels, all
data are represented as sequences of binary digits (bits).
Higher level languages allow one to use abstractions and to
ignore the details of representation—largely by developing the
concept of data tvoa -

A data type defines the set of values a variable may assume.
Every variable occurring in a program must be associated with
one and only one type. Although data types in Pascal can be
quite sophisticated, each must be ultimately built from
unstructured types. An unstructured type is either defined by
the programmer, and then called a declared scalar type, or one
of the four standard scalar types—integer, real. Boolean, or
char ,

A scalar type is characterized by the set of its distinct
values, upon which a linear ordering is defined. The values are
denoted by identifiers in the definition of the type (see
chapter 5).

A, The type Boolean

A Boolean value is one of the logical truth values denoted by
the predefined identifiers false and true.

The following logical operators yield a Boolean value when
applied to Boolean operands: (Appendix B summarizes all
op er at ors ,)

and logical conjunction
Iin logical disjunction
not logical negation

Each of the relational operators («, <>, <-, <, >, >*, in)
yields a Boolean value. Furthermore, the type Boolean is defined
such that false < true. Hence, it is possible to define each of
the 16 Boolean operations using the above logical and relational
operators. For example, if p and q are Boolean values, one can
express

P <« q

P * q

P <> q

implication
equivalence
exclusive OR

as
as
as

13

Standard Boolean functions—i.e . standard functions which yield
a Boolean result—are: (Appendix A summarizes all standard
functions •)

odd (x)
eoln(f)
eof(f)

true if the integer x is odd, false
end of a line, explained in chapter
end of file, explained in chapter 9

otherwise
9

B . The type integer

A value of type integer is an element of the
implementation-defined subset of whole numbers.

The following arithmetic operators yield an integer value when
applied to integer operands :

* multiply
div divide and truncate (i.e. value is not rounded)
mod a mod b = a - ((a div b)*b)
+ add

subtract

The relational operators =, <>, <, <=, >«, > yield a Boolean
result when applied to integer operands. <> denotes inequality.

Four important standard functions yielding integer results are:

abs (x)
sqr (x)
trunc (x)

round(x)

t he result is the absolute v a lu e of X .

t he result is X squared.
X is a r ea 1 value; the result is its who le p art .
(Th e fra ct ional part is discar ded . H enc e

tru nc(3.7)= 3 and trunc(-3.7) —3)
X is a r ea 1 value; the res ult is the r ou nde d
integer . r ou nd(x) means for X >» 0 trunc (x+0 .5). a n d

for x<0 tru nc (x-0.5)

abs and sqr yield a n integer r es
argumen t is als o of type integer. If i is
integer , then

succ (i) yields t he **next ** integer, and
pr ed (i) yields the I Dreceding integer

This is , however , more clearly expressed by t
i + 1 and i-1

There exists an implementati on-dependent
maxint . If a and b are integer expressions , t

ult only when their
a variable of type

he expressions

standard identifier
he operation :

a lie, b

is guaranteed to be correctly implemented when

14

abs (a flCL b) maxint ,
abs (a) <« maxint , and
abs (b) <* maxint

C . The type real

A value of type real is an element of the
implementation-defined subset of real numbers .

As long as at least one of the operands is of type
real (the other possibly being of type integer) the following
operators yield a real value:

* multiply
/ divide (both operands may be integers , but

the result is always real)
+ add
- subtract

Standard functions when accepting a real argument yield a real
result :

abs (x) absolute value
sqr (x) X squared

Standard functions with real or integer argument and real
result :

sin (x)
cos (x)
arctan (x)
In (x)
exp (x)
sqrt (x)

trigonometric functions

natural logarithm
exponential function
square root

Warning: although real is included as a scalar type, it cannot
always be used in the same context as the other scalar types • In
particular, the functions pred and succ cannot take real
arguments , and values of type real cannot be used when indexing
arrays, nor in controlling for statements, nor for defining the
base type of a set.

D , The type char

A value of type char is an element of a finite and ordered set
of characters. Every computer system defines such a set for the
purpose of communication. These characters are then available on
the input and output equipment. Unfortunately, there does not

4

15

exist one standard character set; therefore, the definition of
the elements and their ordering is strictly implementation
dependent .

The following minimal assumptions hold for the type char,
independent of the underlying impementation :

The character set includes
1. the alphabetically ordered set of capital Latin letters

A .. .Z
2. the numerically ordered and contiguous set of the decimal

digits 0,..9
3. the blank character.

A character enclosed in apostrophes (single quotes) denotes a
constant of this type,

examples :

(To represent an apostrophe, one writes it twice.)

The two standard functions prinl and chr allow
given character set onto a subset of natural
ordinal numbers of the character set—and
chr are called

the mapping of
numbers —called
vice versa; ord

the
t he
and

ord(c) is the ordinal number of the character c in the
underlying ordered character set. (also see section
5.A)

chr(i) is the character value with the ordinal number i.

One sees immediately that ord and chr are inverse functions .
i .e ,

chr(ord(c)) = c -and- ord(chr(i)) = i

Furthermore, the ordering of a given character set is defined by
c1 < c2 iff ord(c1) < ord(c2)

This definition can be extended to each of the relational
operators: *. <>. <. <«. >*. >. If R denotes one of these
operators , then

cl R c2 iff ord(c1) R ord(c2)

When the argument of the standard functions pred and succ is of
type char, the functions can be defined as:

pred (c) = chr(ord(c)-1)
succ(c) = chr (or d (c)-»■ 1)

Note: The predecessor (successor) of a character is dependent
upon the underlying character set and is undefined if one does

not exist ,

PARI
3

lUL PRQI3RAM HEAQINQ Afia THE

Every program consists of a heading and a block. The block
contains a declaration part, in which all objects local to the
program are defined, and a statement part, which specifies the
actions to be executed upon these objects.

<program> <program heading> <block>
<block> <label declaration part>

<constant definition part>
<type definition part>
<variable declaration part>
<procedure and function declaration part>
<statement part>

A. Program heading

The heading gives the program a name (not otherwise significant
inside the program) and lists its parameters, through which the
program communicates with the environment (see chapter 13.B.1).

<program heading> aronram <identifier> (<file identifier>
{, <file identifier> }) ;

B . Label declaration part

Any statement in a program may be marked by prefixing the
statement with a label followed by a colon (making possible a
reference by a goto statement). However, the label must be
defined in the label declaration part before its use. The symbol
ladfil heads this part, which has the general form:

label <label> {, <label>};

A label is defined to be an unsigned integer, and consists of at
most 4 digits .

example :
3,1B;

C . Constant definition part

A iS.QJlS,lLflJliL definition introduces an identifier as a synonym for
a constant . The symbol eonst introduces the constant definition
part, which has the general form:

Jinnsl. <identifier> » <constant>; { <identifier> = <constant>;|

17

where a constant is either a number, a constant identifier
(possibly signed), nr a string.

The use constant identifiers generally makes a program more
readable and acts as a convenient documentation aid. It also
allows the programmer to group machine or example dependent
quantities at the beginning of the program where they can be
easily noted and/or changed. (Thereby aiding the portability and
modularity of the program.)

As an example, consider the following program:

{ program 3.1
example of constant definition part }

program convert(output);

const addin * 32; mulby * 1.8; low = 0; high * 39;
separator = *-

var degree : low..high;
begin

writeln(separat or);
for degree low tjo, high ila
begin write(degree,'c*,round(degree*mulby + addin),'f');

if ndd(degree) then writeln
end!

writeln;
writ eln(separat or)

end,

0c 32f 1c 34f
2c 36f 3c 37f
4c 39f 5c 41f
6c 43f 7c 45f
8c 46f 9c 48f

10c 50f 11c 52f
12c 54f 13c 55f
14c 57f 15c 59f
16c 61f 17c 63f
18c 64f 19c 66f
20c 68f 21c 70f
22c 72f 23c 73f
24c 75f 25c 77f
26c 79f 27c 81f
28c 82f 29c 84f
30c 86f 31c 88f
32c 90f 33c 91f
34c 93f 35c 95f
36 c 97f 37c 99f
38c 100f 39c 102f

18

D . Type definition part

A data type in Pascal may be either directly described in the
variable declaration or referenced by a tvoe identifier .
Provided are not only several standard type identifiers, but
also a mechanism, the tvoe definition . for creating new types.
The symbol type introduces a program part containing type
definitions . The definition itself determines a set of values
and associates an identifier with the set. The general form is:

tiZPe <identifier> = <type>; { <identifier> = <type>;}

Examples of type definitions are found in the subsequent
chapters .

E • Variable declaration part

Every variable occurring in a statement must
This declaration must t

be declared in a
extually precede

any use of the variable.

A variable declaration associates an identifier and a data type
with a new variable by simply listing the identifier followed by
its type. The symbol yar heads the variable declaration part.
The general form is:

var <identifier> {, <identifier>}
{<identifier> {, <identifier>}

<type>;
<type >;}

example :
y.ai: root 1 ,root2,root3: real;

count ,i : integer ;
found : Boolean;
filler : char;

This identifier/type association is valid throughout the entire
block containing the declaration, unless the identifier is
redefined in a subordinate block. Suppose a block B is nested
within block A. (i.e. declared within the scope of and hence
subordinate to A , as in figure 0 .b) It is possible to declare an
identifier in B that is already declared in A . This has the
effect of associating that identifier with a variable local to
B—not available to A—which may be of any type. The latter
definition is then valid throughout the scope of B, unless
redeclared in a block subordinate to B . It is not allowed to
declare a single identifier more than once within the same level
and scope. Hence the following is always incorrect,

a • integer;
a : real:

19

F. Procedure and function declaration part

4
IJd£ CONCEPT JQ£ A.CIim

Essential to a computer program is action. That is, a program
must do something with its data—even if that action is the
choice of doing nothing! Statements describe these actions.
Statements are either simple (e.g. the assignment statement) or

structured.

A. The assignment statement

The most fundamental of statements is the assignment statement .
It specifies that a newly computed value be assigned to a
variable. The form of an assignment is:

<variable> :* <expression>

where :* is the assignment oo erat or . not to be confused with the
relational operator =. The statement "a :« 5” is pronounced **the
current value of a is replaced with the value 5*', or simply, “a
becomes 3".

The new value is obtained by evaluating an express ion consisting
of constant or variable operands, operators, and function
designators. (A function designator specifies the activation of
a function. Standard functions are listed in Appendix A; user
defined functions are explained in chapter 11.) An expression is
a rule for calculating a value where the conventional rules of
left to right evaluation and oo erat or precedence are observed.
The operator not (applied to a Boolean operand) has the highest
precedence, followed by the multiplying operators (*, /, div .
mod. and). then the adding operators (+ , nC.)» and of lowest
precedence, the relational operators («, <>, <, <*, >*, >, in).
Any expression enclosed within parentheses is evaluated
independent of preceding or succeeding operators.

ex amples :
2 * 3-4 * 5
15 div 4*4
80/5/3
4/2 *3
sqrt(sqr(3)+11*5)

(2*3) - (4*5)
(15 4)*4
(80/5)/3
(4/2)*3

-14
12
5.333
6.000
6.000

The syntax of Appendix D reflects the exact rules of precedence.
The reader is recommended to reference it whenever in doubt.

Boolean expressions have the property that their value may be
known before the entire expression has been evaluated. Assume
for example, that x=0. Then

(x>0) and (x<10)

is already known to be false after computation of the first

21

factor, and the second need not be evaluated* The rules of
Pascal neither require nor forbid the evaluation of the second
part in such cases. This means that the programmer must assure
that the second factor is well-defined, independent of the value
of the first factor. Hence, if one assumes that the array a has
an index ranging from 1 to 10, then the following example is in
error !

X : = 0;
repeat x

(Note that
a[11] .)

:* x+1 until (x>10) uc. (a[x]«0)

if no a[i] * 0, the program will refer to an element

Assignment is possible to variables of any type, except
files. However, the variable (or the function) and the
expression must be of identical type, with the exception that if
the type of the variable is real, the type of the expression may
be integer. (If a subrange type is involved, its associated
scalar type determines the validity of the assignment; see
section 5 ,B ,)

examples of assignments:
root 1 : = pi*x /y
root 1 : = -root 1
root3 :* (rootl + root2)*(1,0 + y)
found : a y >2

count := count 1
degree := degree + 10
sqrpr := sqr(pr)
y :a sin (x) + cos(y)

B , The compound statement

cof^Pound statement specifies that its component statements
be executed in the same sequence as they are written. The
symbols begin and end act as statement brackets . Note that the

body of a program has the form of a compound statement.

{ program 4.1

the compound statement }

program beginend (output);

var sum ; integer;
begin

sum :a 3+5;
writeln (sum,-sum)

erul.

8 -8

22

Pascal uses the semicolon to s eoarate statements, not to
terminate statements; i .e . the semicolon is NOT part of the
statement . The explicit rules regarding semicolons are reflected
in the syntax of Appendix D . If one had written a semicolon
after the second statement, then an emoty statement (implying no
action) would have been assumed between the semicolon and the
symbol end . This does no harm, for an empty statement is
allowable at this point. Misplaced semicolons can, however,
cause troubles—note the example in section 4 .D .

C . Repetitive statements

specify that certain statements be
repeatedly executed. If the number of repetitions is known
beforehand (before the repetitions are begun), the for statement
is usually the appropriate construct to express the situation;
otherwise, the repeat or while statement should be used.

C .1 The while statement

The while statement has the form:

while <expression> iifl <statement>

The expression controlling the repetition must be of type
Boolean. It is evaluated before each iteration, so care must be
taken to keep the expression as simple as possible.

{ program 4.2
compute h(n) = 1 1/2 + 1/3 + ... + 1/n }

ornoram egwhile(input , output);

var n : integer; h : real;
haoin read (n); write(n);

h : = 0 ;
yhile n>0 da

begin h :s=h -i- 1/n; n :=n-1

s.nA:
writeln(h)

end .

10 2.928968253968e+00

executed
the above

. If its

by the while statement (a compound
case) is repeated until the expression
value is false at the beginning, the

The statement
statement in
becomes false

23

statement is not executed at all.

C .2 The repeat statement

The repeat statement has the form:

USB.6a,t <statement> { ; <statement>} until <expression>

The sequence of statements between the symbols repeat and until
is executed at least once. Repeated execution is controlled by
the Boolean expression, which is evaluated after every
iteration .

{ program 4.3
Compute h(n) « 1 + 1/2 + 1/3 + . . . + 1/n }

0.rflflram, egrepeat (input , output);

^an n : integer; h : real;
begin read(n); write(n);

h : = 0;

naaaaJL h:«h + 1/n; n:=*n-1
until n=0;
writeln(h)

end ,

10 2.928960253968e+OO

The above program performs correctly for n>0. Consider what
happens if n<»0. The while-version of the same program is
correct for all n, including n=0.

Note that it is a sequence of
statement executes; a bracketing
redundant (but not incorrect).

statements that the repeat
pair hecin ,. >qnd would be

C .3 The for statement

he for statement indicates that a statement be repeatedly
executed while a progression of values is assigned to the

■ggniXUl. vg.lli,a.ble of the for statement. It has the general form:

fun <control variable>

(or)

Lsm <control variable>

<initial value> <final value>
dfl <statement>

<initial value> downt□ <final value>
dfl, <statement>

24

{ program 4,4

compute h(n) = 1 + 1/2 + 1/3 + ... + 1/n }

program egfor (input, output):

var i,n : integer; h : real:
begin reacl(n); write(n):

h :« 0 :

£fl£ i 5 “ n (^iQwnt O 1 ilil h ; = h + 1 /i ;
writeln(h)

and.

10 2.92896a253968e+00

{ program 4.5
compute the cosine using the expansion:

cos(x) « 1 - x**2/(2*1) + x**4/(4*3*2*1) - ... }

program cosine (input, output):

const eps = 1e-14;
var X ,sx ,s ,t :real:

i .k ,n :integer :
begin read (n):

for i : = 1 txi n do
begin read(x): t := 1; k :« 0; s := 1; sx :« sqr(x);

while abs(t) > eps*abs(s) xifl
tienin k k + 2; t := -t *sx/(k»(k-1)) ;

s : - s +t
end ;
wr iteln (x ,s ,k div 2)

end

and.

1.534622222233e-01 9.882477647614e-01 5
3.333333333333e-.01 9.449569463 147e-0 1 6
5.000000000000e-01 8.775825618904e-01 7
1.000000000000e+00 5.403023058681e-01 9
3.141592653590e+00 -1.OOOOOOOOOOOOe+00 14

The control variable, the initial value, and the final value
must be of the same scalar type (excluding type real), and must
not be altered by the for statement. The initial and final
values are evaluated only once. If in the case of ta fdownto)
the initial value is greater (less) than the final value, the
for statement is not executed. The final value of the control
variable is left undefined upon normal exit from the for
statement .

25

A for statement of the form:

ffir V : = e 1 in e 2 ilfl S

is equivalent to the sequence of statements:

i£ e1<*e2 t hRn

ilfiflln V :®e1; S; v :»succ(v); S; v :=e2; S
end

{at this point, v is undefined)

and a for statement of the form:

for V := e 1 downto e2 in S

is equivalent to the statement :

i£ e1> = e2 then

V := e1; S; v := pred(v); S; v :» e2; S
ami
{at this point, v is undefined)

As a final example consider the following program.

{ program 4.6

compute 1 - 1/2 + 1/3-...+1/9999 - 1/10000 , 4 ways.
1) left to right, in succession
2) left to right, all pos and neg terms, then subtract
3) right to left in succession
4) right to left, all pos and neg terms, then subtract)

Program summing (output);

van s 1 ,s 2p ,s 2n ,s 3,s 4p ,s 4n ,lrp ,lr n ,r Ip ,r In : real;
i : integer ;

bgaip si :=0;s2p :=0;s2n :=0;s3:=0;s4p :=0;s4n :=0
for i := 1 in 5000 do

bealg
Irp := V(2*i-1); { pos terms, left to right)
Irn :* 1/(2*i); { neg terms, left to right)
rip := 1/(10001-2*i); { pos terms, right to left)
rln := 1/(10002-2*1); {neg terms, right to left }
si ; SB si + Irp - Irn;
s 2p : s= s 2p + Irp; s 2n :* s 2n + Irn;
s3 := s3 + rip - rln;
s 4p : = s 4p + rip ; s 4n := s4n + rln

end ;
write In (s 1 ,s 2p-s 2n) ;

wr iteln (s 3,s4p -s4n)

6.930971830595e-01
6.93097l830599e-01

6.930971830612e-01
6.930971830601e-01

26

Why do the four **identical ** sums differ?

D . Conditional statements

A conditional statement _ an if or case statement, selects a
single statement of its component statements for execution. The

if. statement specifies that a statement be executed only if a
certain condition (Boolean expression) is true. If it is false,
then either no statement or the statement following the symbol
g.lse is executed .

D ,1 The if statement

The two forms for an if statement are:

if <expression> then <statement>
(or)

if <expression> then <statement> else <statement>

The expression between the symbols i£ and then must be of type
Boolean. Note that the first form may be regarded as an
abbreviation of the second when the alternative statement is the
empty statement. Caution: there is never a semicolon before an
else ! Hence, the text:

if p t hen begin S 1; S2: S3 find.I else S4

is incorrect. Perhaps even more deceptive is the text:

if p then ; begin S 1; S 2; S3 end

Here, the statement controlled by the if is the empty statement,
between the t hen and the semicolon; hence, the compound
statement following the if statement will always be executed.

The syntactic ambiguity arising from the construct :
if <expression-1> then if <expression-2> then <statement-1>

else <statement-2>

is resolved by interpreting the construct as equivalent to
if <expression-1> then

begin if <express ion-2> then <statement-1>
else <statement-2>

&asi

The reader is further cautioned that a carelessly formulated if
statement can be very costly. Take the example where one has
n-mutually exclusive conditions, c1...cn, each instigating a

27

distinct action, si. Let P(ci) be the probability of ci being
true, and say that P(ci)>=P(cj) for i<j. Then the most efficient
sequence of if clauses is:

jL£ c 1 then s 1
IL c2 then s 2

■SlSfi c (n -1) then s (n -1) else s n

The fulfillment of a condition and the execution of its
statement completes the if statement, thereby bypassing the
remaining tests.

If found is a variable of type Boolean, another frequent abuse
of the if statement can be illustrated by:

IL a«b jLiian found := true else found := false

A much simpler statement is:

found :« a=b

{ program 4.7

write roman numerals }

program roman (output);

28

var X ,y : integer;

kgaln y :* 1:
rgasat. X :=y; write(x/ ');

while x>=1000 ^

begin write('m'); X : = x-100 0 end :
i£ x>«500 t hen

begin write('d'); X :« X -5 0 0 SlUsI ;
while x>=100 do

begin writ e ('c *); X : = x-100 end :
i£ x>*50 then j

begin write('l'); X : = X-5 0 end;

while x>=10 sin
begin write('x'): X : = x-10 end :

if x>=5 then
begin write('v'): X : = X -5 s,nsL 1

while x>=1 sla \
1

begin write('i'); X : = x-1 '
writeln ; y := 2*y

until y>5000

s.nsL •

1 i
2 ii
4 iiii
6 viii

16 xvi
32 xxxii
64 Ixiiii

128 cxxviii
256 cclvi
512 dxii

1024 mxxiiii
2048 mmxxxxviii
4096 mmmmlxxxxvi

Notice again that it is only one statement that is controlled by
an if clause. Therefore, when more than one action is intended,
a compound statement is necessary.

The next program raises a real value x to the power y, where y
is a non—negative integer. A simpler, and evidently correct
version is obtained by omitting the inner while statement: the
result z is then obtained through y multiplications by x. Note
the loop invariant: z*(u**0)=x**y. The inner while statement
leaves z and u**e invariant, and obviously improves the
efficiency of the algorithm.

29

{ program 4.8

exponentiation with natural exponent }

acflflr.am exponentiation (input , output);

y.ax: e ,y : integer; u ,x .2 ; real;
tlfiflin read(x,y); write (x.y);

z :* 1; u :*x; e s=y;
JfltJlilfi e>0 iin
l:i£.aln {2 *u **e = x **y , e >0}

jftLliilfi nai odci(e) iia
e :* e 2; u :« sqr (u)

anil;
e i®e — 1; z ;=u*2

£Dii:
writeln(z) {2 = x **y}

£ml .

2.OOOOOOOOOOOOe+00 7 1 .280000000000e+02

The following program plots a real-valued function f(x) by
letting the X-axis run vertically and then printing an asterisk
in positions corresponding to the coordinates. The position of
the asterisk is obtained by computing y=f(x), multiplying by a
scale factor s, rounding the product to the next integer, and
then adding a constant h and letting the asterisk be preceded by
that many blank spaces.

30

{ program 4.9
graphic representation of a function
f(x) « exp(-x) * sin(2*pi*x) }

orQoram graph1(output) ;
rnnst d * 0.0625; {1/16, 16 lines for interval [x,x+1])

s = 32; {32 character widths for interval [ytX+l])
h * 34; {character position of x-axis)
c « 6.20318; {2*pi) lim « 32;

var X ,y : real; i,n : integer;
begin

for i :« 0 ta lini shi
hentn x :« d*i; y :« exp(-x)*sin(c*x);
n :* round(s*y) h;
repeat write(' '); n :» n-1
until ne0;
writeln('*')

end
end ,

*

*

*

*

*

*

*

*

*

31

D .2 The case statement

The case statement consists of an expression (the selector) and
a list of statements, each being labelled by a constant of the
type of the selector. The selector type must be a scalar type,
excluding the type real. The case statement selects for
execution that statement whose label is equal to the current
value of the selector; if no such label is listed, the effect is
undefined. Upon completion of the selected statement, control
goes to the end of the case statement. The form is:

case <expression> xi£
<case label list> : <statement>;

<case label list> : <statement>
end

examples: (assume var i:

i qL
0 ; X : » 0 ;
1: X :« sin (x) ;
2: X :« cos (x);
3: X :« exp (x);
4: X :- ln(x)

end

integer; ch: char;)
LLaafi ch ii£

a .b .c :ch :=
0,000
d . e : ch :■
•f'/g': {null

ami

succ(ch);
pred(ch);
case}

Notes: **Case labels** are noL ordinary labels (see section 4 .E)
and cannot be referenced by a goto statement . Their ordering is
arbitrary; however. labels must be unique within a given case
statement .

Although the efficiency of the case statement depends on the
implementation, the general rule is to use it when one has
several mutually exclusive statements with similar probability
of selection .

E , The goto statement

A stflt^Bfnent is a simple statement indicating that further
processing should continue at another part of the program text
namely at the place of the label.

flfl.tP <label>

Each label (an unsigned integer that is at most 4 digits) must
appear in a label declaration prior to its occurrence in the
program body. The scope of a label L declared in a block A is
the entire text of block A. That is. anfi. statement in the
statement aaxii of A may be prefixed with L:. Then any other
statement within the whole of block A may reference L in a goto
statement .

32

example (program fragment):

label 1; {block A}

^procedure B; {block 0}
label 3;

begin

3: writeln ('error');

goto 3

goto 1

end ; {block B}

begin {block A}

• • •

1: writeln(' test fails')
{a ^gotQ 3** is not allowed in block A}

end

Warning: The effect of jumps from outside of a structured
statement into that statement is not defined. Hence, the
following examples are incorrect. (Note that compilers do not
necessarily indicate an error.)

Illena1 examples :

a) fan is* ^ fa cio
begin s 1;
3: S2

aail:
goto 3

b) if p than sntn 3;

if g then 3: S

begin
3: S

&dA:
iinnin • • •

goto 3

ami.

A goto statement should
situations where the natur
broken . A good rule is
regular iterations and co
such jumps destroy t
computation in the text
Moreover , the lack of
computational (static a
detrimental to the clarit

be reserved for unusual or uncommon
al structure of an algorithm has to be

to avoid the use of jumps to express
nditional execution of statements, for
he reflection of the structure of
ual (static) structure of the program.
correspondence between textual and

nd dynamic) structure is extremely
y of the program and makes the task of

33

verification much
Pascal program is
not yet learned
construct in other

more difficult. The
often an indication

to think in Pascal
programming languages)

presence
that the
(as this

of goto's in a
programmer has
is a necessary

5

scalar and subrange types

A . Scalar types

The basic data types in Pascal are the scalar types . Their
definition indicates an ordered set of values by enumerating the
identifiers which denote the values.

type <type identifier> = (<identifier> { , <identifier>}) ;

example :
type color = (white.red,blue.yellow ,purple .green ,

orange .black) :
sex = (male .female);
day = (mon .tues .wed .t hur .fri .sat .sun);
operators = (plus.minus ,times .divide) ;

illegal example :
type workday = (mon .tues .wed .t hur .fri .sat);

free * (sat .sun);
(for the type of sat is ambiguous)

The reader is already acquainted with the standard type Boolean
defined as :

type Boolean = (false, true);

This automatically implies the standard identifiers false and
true and specifies that false<true.

The relational operators *. <>. <. <*. >=. and >. are applicable
on all scalar types provided both comparands are of the same
types. The order is determined by the sequence in which the
constants are listed.

Standard functions with arguments of scalar types are;

succ(x) e .g . succ(blue) = yellow the successor of x
pred(x) pred(blue) = red the predecessor of x
ord (x) ord(blue) = 2 the ordinal number of x

The ordinal number of the first constant listed is 0, ord (x) =
ord (pred (x)) + 1.

Assuming
Boolea n.
following

t hat c and c1
and s 1. . .s n

are meaningful

are of type color (above), b
are arbitrary statements,

statements :

is of type
then the

35

for c ;« black downt□ red jia s1

while (cloc) and b dn s1

jL£ owhite then c ;« pred(c)

cas e c nf.
red,blue,yellow: s1;
purple: s2;
green,orange: s3;
white,black: s4

end

B. Subrange types

A type may be defined as a subrange of any other already defined
scalar type—called its associat ed scalar tvoe . The definition
of a subrange simply indicates the least and the largest
constant value in the sub range , whe re the lower bound must not be
greater than the upper bound, A subrange of the type real is rmt.
allowed•

type <type identifier> « <constant> <constant> ;

Semantically, a subrange type is an appropriate substitution for
the associated scalar type in all definitions. Furthermore, it
is the associated scalar type which determines the validity of
all operations involving values of subrange types. For example,
given the declaration;

var a: 1,,10; b: 0,,30; c:20,,30;

The associated scalar type for a, b, and c is integer. Hence the
assignments

a :* b; c :« b; b:* c;

are all valid statements, although their execution may sometimes
be infeasible. The phrase "or subrange thereof" is therefore
assumed to be implied throughout this text and is not always
mentioned (as it is in the Revised Report,)

example:
type days » (mon,tues,wed,thur,fri,sat ,sun) ; {scalar type}

workd * mon,,fri; (subrange of days}
index « 0,,63; (subrange of integer}
letter = 'a',,'z'; (subrange of char}

Subrange types provide the means for a more explanatory
statement of the problem. To the implementor they also suggest
an opportunity to conserve memory space and to introduce
validity checks upon assignment at run-time, (For an example
with subrange types, see program 6,3,)

6

SiaULCXURLa I1PL2 IK IhLL hMLl LK

Scalar and subrange types are unstructured types . The other
types in Pascal are structured types . As structured statements
were compositions of other statements, structured types are
compositions of other types. It is the type(s) of the components
and—most importantly—the structuring method that characterize
a structured type.

An option available to each of the structuring methods is an
indication of the preferred internal data representation. A type
definition prefixed with the symbol packed signals the compiler
to economize storage requirements, even at the expense of
additional execution time and a possible expansion of the code,
due to the necessary packing and unpacking operations. It is the
user's responsibility to realize if he wants this trade of
efficiency for space. (The actual effects upon efficiency and
savings in storage space are implementation dependent, and may,
in fact , be nil .)

The array type

An array type consists of a fixed number of components (defined
when the array is introduced) where all are of the same type,
called the component or type . Each component can be
explicitly denoted and directly accessed by the name of the
array variable followed by the so-called index in square
brackets. Indices are computable; their type is called the index
type . Furthermore, the time required to select (access) a
component does not depend upon the value of the selector
(index); hence the array is termed a random-access structure .

The definition of an array specifies both the component type and
the index type. The general form is:

A = array[T1] af T2;

where A is a new type identifier; T1 is the index type and is a
scalar or subrange type (where types integer and real are
not allowable index types); and T2 is any type.

examples of variable declarations -and- sample assignments

memory : arrant 0..max] a£ integer memory[i+j] :» x
sick : arxiay.[days] a£ Boolean sick[mon] := true

(Of course these examples assume the
identifiers .)

definition of the auxiliary

37

{ program part 6.1

find the largest and smallest number in a given list }

program minmax (input. output);

Cflns.t n = 20;
VAr i ,u .V .min .max : integer;

a : array f 1..n1 integer;

{assume that at this point in the program, array a
contains the values: 35 68 94 7 88 -5 -3 12 35 9
-630-2 74 88 52 43 5 4}

min :* a[1] ; max

Ehlls i < n do
jaaflln u :« aTi] ;

if u >v then
ilAAin if u >max

i£ v<min
6nd else
begin if v >max

if u<min
end ;
i := i+2

:« min; i :« 2;

V : = a[i+1] f

fiiAn max :« u
th£n min : ■ V

fJifin max : ■ V

fiiAn min : = u

end ;
if i=n iJiBii

if a[n]>max then max a[n]
else if a[n]<min then min a[nj ;

writeln (max .min)

Anil •

94 -6

38

{ program 6.2
extend program 4.9 to print x-axis }

program graph2(output) ;
rnnst d = 0.0625: 16 lines for interval [x,x + 1]}

s * 32; {32 character widths for interval [yTy + '']l
h1 * 34; {character position of x-axis}
h2 « 68; {line width}
c = 6.28318; {2*pi} lim = 32;

var itJAin; integer; x,y: real;
a : array F1,.h2l nL char; ^ ^

haain for j := 1 in h2 iLq. a[j] * •
for i 0 in lim iia
haain x ; =* d*i ; y := exp (-x)*sin (c*x) ; ^ ^

a[h1] := n ;= round (s*y) +h1; a[n] :* * ;
if. n < hi then k hi else k := n;
for j 1 t n k do writ e (a[j 1) ;

writeln; a[n] :«
end

end.

*

*

*

*

39

(Consider how one would extend program 6.2 to print more than

one function—both with and without the use of an array.)

Since T2 may be of any type, the components of arrays may be
structured. In particular. if T2 is again an array, then the
original array A is said to be multidimensional . Hence, the

declaration of a multidimensional array M can be so formulated;

VAC M : acca^[a..b] siL accav[c..d] at T;
and

M[i][j]

then denotes the jth component (of type T) of the ith component
of M .

For multidimensional arrays, it is customary to make the
convenient abbreviations:

vax M : array f a . .b .c . >d1 T;
and

We may regard M as a matrix and say that is the jth
component (in the jth column) of the ith component of M (of the
ith row of M),

This is not limited to two dimensions , for T can again be a
structured type. In general, the (abbreviated) form is:

type <type identifier> =
array f <index type> { , <index type>}] ji£ <component type> ;

If n index types are specified, the array is said to be
n-dimensional . and a component is denoted by n index
expressions .

40

{ program 6,3
matrix multiplication)

program matrixmu1(input, output):

const m=4: p=3: n=2:
var i : 1..m; j : 1..n; k : 1..p;

s : int eger :
a : ai:iiaz[1 • .m , 1 . .p] q.L integer;
b : array f 1, .p . 1 , .n 1 integer;
c : array \ 1 . ,m . 1 , ,n1 n£ integer;

begin {assign initial values to a and b}
for i : = 1 JLfl m ila
begin for k : = 1 tfl p j^q

begin read (s) ; write(s); a[i,k] := s

s.dA:
writeln

writeln ;
for k :« 1 iLQ P lln
tieflip foil j 1= 1 In n jia

begin read(s); write(s); b[k,j] := s

pmi:
writeln

end ;
writeln ;
{multiply a * b}
for i : = 1 tn m

h&a.La fan J ^ ta n jin
begin s := 0 ;

for k : = 1 tfl. p xla s :=s +a[i,k3*b[k,j];
c[i , j] :* s; write(s)

££lil;
writeln

end ;
writ eln

SJDA

1
-2

1
-1

2
0
0
2

3
2
1

-3

-1
-2

2

3
2
1

1
6
1

-9

10
-4

4
-2

Strings were defined earlier as sequences of characters enclosed

41

in single quote marks (chapter 1). Strings consisting of a
single character are the constants of the standard type char

(chapter 2); those of n characters (n>1), are defined as
constants of the type defined by:

pacKfid aiina^E i..n] at char

Assignment (s®) is possible between operands of 1dpntical array
types. The relational operators =. <>, <, >, <= and >* are

applicable on operands of identical packed character arrays ,
where the underlying character set determines the ordering.

Access to individual components of packed arrays is often
costly, and the programmer is advised to pack or unpack a packed
array in a single operation. This is possible through the
standard procedures pack and unpack. Letting A be an array
variable of type

fliicay [m . .n] T

and Z be a variable of type

arcay.Cu..v] aL T

where (n-m) >« (v-u), then

pack(A,i.Z) means for j :« u Jtn v slU
Z[j] :« A[j-u+i]

and
unpack (Z ,A ,i) means for j :« u in v jla

A[j-u+i] Z[j]

where j denotes an auxiliary variable not occurring elsewhere in
the program .

7

BLLflHD. IIEEB

The record types are perhaps the most flexible of data
constructs. Conceptually, a record type is a template for a
structure whose parts may have quite distinct characteristics .
For example, assume one wishes to record information about a
person. Known are the name, the social security number, sex,
date of birth, number of dependents, and marital status.
Furthermore, if the person is married or widowed, the date of
the (last) marriage is given; if divorced, one knows the date of
the (most recent) divorce and whether this is the first divorce
or not; and if single, given is whether an independent residency
is established. All of this information can be expressed in a
single “record**.

More formally, a record
number of components ,
components are not cons
cannot be dir ect ly indexe
compo n ent it s typ e and
denot e it • T he s cope
record in w hie h it is
select ed compon ent be
execut ing the pr ogram) , t
field iden tif iers r ather

To take a simple examp
complex numbers of the for
and i is the square r
*'complex**. However, the
type to represent compl
fields, both of type real,
syntax necessary to expres

is a structure consisting of a fixed
called Zlslds. • Unlike the array,

trained to be of identical type and
. A type definition specifies for each

n identifier, the field identifier . to
f a field identifier is the innermost
defined. In order that the type of a

vident from the program text (without
e record selector consists of constant
han a computable value,

le , assume one wishes to compute with
m a+bi, where a and b are real numbers
oot of -1, There is no standard type
programmer can easily define a record

ex numbers. This record would need two
for the real and imaginary parts. The

s this is :

<record type> record <field list> end
<field list> <fixed part> | <fixed part> ; <variant part> 1

<variant part>
<fixed part> <record section> {; <record section>}
<record section> <field identifier> {, <field identifier>} :

<type> I <empty>

Applying these rules
declaration:

one can state the following definition and

type complex = record re,im : real
jsmi:

var X : complex;

where complex is a type identifier, re and im
fields, and x is a variable of type complex,
a record made up of two components or fields .

are identifiers
Consequently, x

of
is

43

Likewise, a variable representing a date can be defined as;

date « record mo;(jan,feb,mar,apr,may,june ,
july ,aug,sept,oct,nov,dec);

day; 1.,31;
year; integer

end

a toy as;

toy « record kind ; (ball,top,boat,doll,blocks
game,model,book);

cost ; real;
received; date;
enjoyed; (alot ,some,alittie,none);
broken,lost; Boolean

end

or a homework assignment as;

assignment « record subject;(history ,language ,lit,
math,psych,science);

assigned: date;
grade; 0.,4;
weight; 1..10

end

To reference a record component, the name of the record is
followed by a point, and the respective field identifier. For
example, the following assigns 5+3i to x;

X .re ;« 5;
X .im :» 3

If the record is itself nested within another structure, the
naming of the record variable reflects this structure. For
example, assume one wishes to record the most recent smallpox
vaccination for each member in the family, A possibility is to
define the members as a scalar, and then the dates in an array
of records:

type family* (father ,mother,child 1,child2,child3);
var vaccine: array F family 1 of, date;

An update might then be recorded as:

vaccine[child3].mo :* apr;
vaccineichild3].day :* 23;
vaccineichild3].year :« 1973

Note: the type **date“ also includes, for instance, a 31st April,

44

{ program 7.1
operations on complex numbers }

program comp lex (output);

£Qns.t fac * 4;
type complex = record re.im : integer end :
var X ,y : complex;

n : integer ;

Jaaflln
X .r e : * 2 ; x ,im :» 7 ;
y .r e : * 6; y ,im ; = 3 ;
£axi n : «= 1 4 jifl.

kaoin
writeln(' x = ' .x .r e : 3 ,x .im : 3 , ' y = ' .y .r e :3 ,y .im ; 3) ;
{x -f y}
writeln(' sum = \x.re + y.re:3,

X .im + y ,im :3);
{x * y}

writeln(' product = '.x.re*y.re - x.im*y.im:3,
X .re*y .im + x .im*y .re :3) ;

writ eln;
X .re := x .re + fac; x .im := x .im - fac;

end

enk .

x= 27 y= 63
sum = 810
product = -9 48

x= 63 y= 63
sum = 12 6
product = 27 36

x= 10-1 y= 6 3
sum = 16 2
product = 63 24

X = 14 -5 y = 6 3
sum = 20 -2
product = 99 12

The syntax for a record type also makes provisions for
» implying that a record type may be specified as

of several variants ■ This means that different
although said to be of the same type, may assume
which differ in a certain manner . The differences may
a different number and different types of components .

consisting
variables ,
structures
consist of

Each variant
declarations
by one or
case clause

is characterised by a list . in
of its pertinent components. Each

more labels . and the set of lists
specifying the data type of these

parentheses, of
list is labelled
is preceded by a
labels (i .e . the

45

type according to which the variants are discriminated). As an
example, assume the existence of a

type maritalstatus « (married, widowed, divorced, single)

Then one can describe persons by data of the

type person =
record <attributes or fields common to all persons> ;

case maritalstatus
married: (<fields of married persons only>) ;
single: (<fields of single persons only>) ;

SUSL

Usually, a component (field) of the record itself indicates its
currently valid variant. For example, the above defined person
record is likely to contain a common field

ms : maritalstatus

This frequent situation can be abbreviated by including the
declaration of the discriminating component—the so-called iafl
field —in the case clause itself, i ,e , by writing

case ms : maritalstatus a£

The syntax defining the variant part is:

<variant part> ::« case <tag field> <type identifier> oL
<variant> {; <variant>}

<varlant> ::= <case label list> : (<field list>) 1
<empty >

<case label list> ::« <case label> {, <case label>}
<case label> ::* <constant>
<tag field> ::« <identifier> : | <empty>

It is helpful to ’’outline’* the information about a person,
before defining it as a variant record structure,

I , Person
A, name (last, first)
B, social security number (integer)
C, sex (male, female)
D, date of birth (month, day, year)
E, number of dependents (integer)
F , marital status

if married ,widowed
a, date of marriage (month, day, year)

if divorced
a, date of divorce (month, day, year)
b, first divorce (false, true)

, if single
a, independent residency (false,true)

46

Figure 7 ,a is a corresponding picture of two "sample** people
with different attributes .

woodyard
(A)

robertsman
edward nicolas

845680539 (B) 627259003

male (C) male
aug I 30 | 1941 (D) mar | 15 | 1932

1 (E) 4

single
(F) divorced

true
Feb 1 23 1 1 972

-Falafi

Figure 7#a Two sample people

A record defining ’’person" can now be formulated as:

^yp e a Ifa = packed array f 1. . 1 01 of char;
status = (married ,widowed .divorced,single) ;
date = record mo : (jan ,feb .mar .apr .may , jun ,

July ,aug .sept .oct .nov .dec) ;
day : 1..31;
year : integer

s,asi;
person = r ecord

name : record first.last: alfa
end ;

ss : integer;
sex : (male .female);
birth : date;
depdts : integer ;
case ms : status

married .widowed : (mdate: date);
divorced : (ddate: date;

firstd: Boolean);
single : (indepdt : Boolean)

Bnd ; {person}

1. All field names must be distinct—even if they occur in
different variants .

2. If the field list for a label L is empty, the form is:
L : ()

3. A field list can have only one variant part and it must
succeed the fixed part (s) , (However, a variant part may
itself contain variants. Hence, it is possible to have nested
variants .)

47

Referencing a
reconstruction
of type person

record component is essentially a simple linear
of the outline. As example, assume a variable p

and "create” the first of the model people.

p .name .last := ^woodyard
p.name.first := 'edward
p .ss :» 845680539;
p .sex : = male ;
p.birth.mo := aug;
p .birth .day :« 30;
P.birth.year := 1941;
p.dep dts : = 1;
p .ms := single ;
p .indepdt := true

A , The with statement

The above notation can be a bit tedious, and the user may wish
to abbreviate it using the with statement . The with clause
effectively opens the scope containing the field identifiers of
the specified record variable, so that the field identifiers may
occur as variable identifiers. (Thereby providing an opportunity
for the compiler to optimize the qualified statement.) The
general form is:

with <record variable> { , <record variable>} iin <statement>

Within the component statement of the with statement one denotes
a field of a record variable by designating only its field
identifier (without preceding it with the notation of the entire
record variable).

The with statement below is equivalent to the preceding series
of assignments :

with p,name,birth do
hBnln last := 'woodyard

first := 'edward
ss := 845680539;
sex : = male;
mo : = aug;
day 30;
year := 1941;
depdts := 1;
ms := single ;
indepdt :* true

end {with}

48

Likewise »

var currentdate : date;

with currentdate da
if mo=dec t hsn

begin mo := jan; year := year+1

S.DJ1
else mo :« succ{mo)

is equivalent to

var currentdate : date;

jL£ currentdate .mo^dec then
begin currentdate.mo := jan;

current date .year := currentdate.year+1
£011

else currentdate.mo := succ (currentdate .mo)

And the following accomplishes the vaccine update exampled
earlier ;

with vaccine [child3] xlo
begin mo :* apr; day :« 23; year :* 1973
S.DSL

No assignments may be made by the qualified statement to any
elements of the record variable list. That is, given:

with r il£L S

r must not contain any variables subject to change by S; for
example :

with a [i]
begin ...

i :» i+1
£Oil

is not allowed .

The form:

iaiitJl r 1, r 2.rn sla S

is equivalent to

with r 1 jjfl
w it h r2 do

with rn dg S

49

Whereas:
)LSLC. a ; array r2 - - 81 a£ integer;

a ; 2..8;

is NOT allowed, for the definition of a is ambiguous,

var a : integer;

b : record a: real; b: Boolean
end :

IS allowed, for the notation for the integer a is easily
distinguishable from the real **b,a**. Likewise, the record
variable b is distinguishable from the Boolean "b.b”.
Within the qualified statement S in

with b lUi S

the identifiers a and b now denote the components b.a and b.b
respectively.

8
lUL SLI 11EL3,

A set type defines the set of values that is the powerset of its
base type, i .e • the set of all subsets of values of the base
type, including the empty set. The base type must be a scalar or
subrange type,

type <identifier> = Q.L <base type>;

Implementations of Pascal may define limits for the size of
sets, which can be quite small (e,g, the number bits ‘in a word).

Sets are built up from their elements by set constructors
(denoted by <set> in the syntax). They consist of the
enumeration of the set elements, i ,e , of expressions of the base
type, which are separated by commas and enclosed by set brackets
[and] , Accordingly, [] denotes the empty set,

<set> [<element list>]
<element list> <element> {, <element>} | <empty>
<element> <expression> 1 <expression> ,. <expression>

The form m , ,n denotes the set of all elements i of the base type
such that m<*i<s»n. If m>n , [m,,n] denotes the empty set.

Examples of set constructors :
[13]

[i+J.i-j]

The following operators are applicable on all objects with set
structure:

+
*

union
int ersection
set difference (e ,g , A-B denotes the set of all elements
of A that are not also elements of B,)

Relational operators applicable to set operands are

.<«

* <> test on (in)equality
test on set inclusion

la set membership , The second operand is of a set
type, the first of its associated base type; the
result is true when the first is an element of the
second, otherwise false."

examples of declarations

51

-and- assignments

type primary = (red .yellow ,blue) ;
color = set of primary ;

var hue1.hue2 : color;

hue1 := [red] ; hue2 [];
hue2 :« hue2 + [succ(red)J

var ch: char;

chset 1.chset2: set nf *a\.*z*;
chset 1 :» [*d '.'a *,'g'] ;
chset2 :» ['a '. . "z']-[ch]

y.ar. opcode : a.£t. aZ 0..7;
add : Boolean;

add :■* [2.3] <* opcode

Set operations are relatively fast and can be used to eliminate
more complicated tests. A simpler test for:

if (ch = 'a ')flxi {ch = 'b *)fli: (ch ='c ')flx: (ch«'d *)flii (ch = '2 ') then s
xS •

if ch in [*a*..'d*.*2'] then s

{ program 8.1

example of set operations }

program setop (output);

fyP^ days = (m ,t .w .t h .fr .sa .su);
week * set of days;

v^ wk .work .free : week;
d ! days;

Erpcedima. check (s : week); {procedures introduced in chapter 11}
)^an d : days ;

bnnin write (' ');
for d : = m in su iln

if d in s ffann write ('x') else write('o');
writeln

end : {check}

l^agin work :» [] ; free :« [] ;
wk : a [m . .su] ;
d :« sa; free :« [d]+ free +[su];
check (free);
work :a wk - free; check(work);
if free <« wk then write (' o*);
if wk >e work then write ('k');
if HilKwork >a free) then write (' jack');
if [sa] <a work then write (' forget it');
writ eln

anil.

oooooxx
xxxxxoo
ok jack

52

On program development

Programming—in the sense of designing and formulating
algorithms—is in general a complicated process requiring the
mastery of numerous details and specific techniques. Only in
exceptional cases will there be a single good solution. Usually,
so many solutions exist that the choice of an optimal program
requires a thorough analysis not only of the available
algorithms and computers but also of the way in which the
program will most frequently be used.

Consequently, the construction of an algorithm should consist of
a sequence of deliberations. investigations, and design
decisions. In the early stages, attention is best concentrated
on the global problems, and the first draft of a solution may
pay little attention to details. As the design process
progresses, the problem can be split into subproblems, and
gradually more consideration given to the details of problem
specification and to the characteristics of the available tools.
The terms ^ t eowise refinement [2] and 5.iLC.U£jLUIlBii andgrarnmilia [^]
are associated with this approach.

The remainder of this chapter illustrates the development of an
algorithm by rewording (to be consistent with Pascal notation)
an example C .A .R . Hoare presents in Structured Programming
[4.“Notes on Data Structuring*’] .

The assignment is to generate the prime numbers falling in the
range 2..n, where n>*2. After a comparison of the various
algorithms, that of Eratosthenes' sieve is chosen because of its
simplicity (no multiplications or divisions).

The first formulation is verbal.

1. Put all the numbers between 2 and n into the “sieve”,
2. Select and remove the smallest number remaining in the

sieve ,
3. Include this number in the “primes”.
4. Step through the sieve, removing all multiples of this

number .
5. If the sieve is not empty, repeat steps 2—5.

Although initialization of variables is the first step in the
execution of a program, it is often the last in the development
process. Full comprehension of the algorithm is a prerequisite
for making the proper initializations; updating of these
initializations with each program modification is necessary to
keep the program running. (Unfortunately, updating is not always
sufficlent !)

Hoare chooses a set type with elements 2.,n to represent both
the sieve and the primes. The following is a slight variation of
the program sketch he presents.

53

^onst n * 10000;

s ieve .primes : s.£lL SlL 2.,n;
next . j : integer ;

JajBflln {initialize}
sieve [2.,n]; primes := []; next :« 2;
repeat (find next prime}

EilULs, not (next in sieve) next :« succ(next);
primes :* primes + [next] ;
j := next;
JflLilllg, j<*n iln {eliminate}

iiaain sieve sieve - [j] ; j :» j next
SLDA

yntil sieve*[]
snsL •

As an exercise Hoare makes the assignment to rewrite the
program. so that the sets only represent the odd numbers. The
following is one proposal. Note the close correlation with the
first solution •

gmiSt. n = 5000; {n' = n div 2}
\LSLXL sieve.primes : set n£ 2..n:

next . j .c : integer;
ilgfllQ {initialize}

sieve := [2,,n]; primes :« []; next :« 2;
repeat {find next prime}

ILhlls. nntCnext in sieve) dn next :» succ(next);
primes :« primes + [next] ;
c := 2*next - 1; {c * new prime}
j :“ next ;

iLJllle j<®n jdn {eliminate}
sieve :« sieve - [j] ; j := j+c

&dA
until sieve=[]

snsL •

It is desirable that all basic set operations are relatively
fast. Many implementations restrict the maximum size of sets
according to their **wor dlengt h **. so that each element of the
base set is represented by one bit (0 meaning absence. 1 meaning
presence). Most implementations would therefore not accept a set
with 10.000 elements. These considerations lead to an adjustment
in the data representation, as shown in program 8.2,

A large set can be represented as an array of smaller sets such
that each ’’fits’* into one word (implementation dependent). The
following program uses the second sketch as an abstract model of
the algorithm. The sieve and the primes are redefined as arrays
of sets; next is defined as a record. The output is left
undeveloped.

54

{ program 8,2
generate the primes between 3.. 10000 using a
sieve containing odd integers in this range,}

program primes (output);

const wdlength = 59; {implementation dependent}
maxbit = 58;
w = 84; {w = n div wdlength div 2}

var sieve,primes : array[0..w] pf set aL 0.,maxbit;
next : record word,bit :integer

£0X1;
j,k,t,c : integer; empty : boolean;

begin {initialize}
for t : =® 0 w do

begin sieveLt] := [0..maxbit] ; primes[t] ;= [] end
sieve[0] :« sieve[0] - [0] ; next .word ;= 0;
next .bit :« 1; empty :* false;

with next
repeat { find next prime }

while nili.(bit in sieve[word]) jdn bit ;* succ(bit);
primes[word] := primes[word] + [bit];
c 2»bit + 1;
j : = bit ; k := word;
while k<«w dn {eliminate}
begin sieve[k] ;= sieve[k] - [j] ;

k := k + word*2; j ;= j + c;
while j>maxbit dn

begin k := k+1; j ;= j -wdlength

SldA
s.dA ;
i£ sieve[word]=[] t hen

begin empty := true; bit :* 0

^ end;
while empty and (word<w) dn

begin word :* word + 1; empty := s iev e [wor d] *[]
end

until empty; {ends with}

nml.

9
FILE TYPES

In many ways the simplest structuring method is the sequence. In
the data processing profession the generally accepted term to
describe a sequence is a s.eguejitia 1 file. Pascal uses simply the
word lilfi to specify a structure consisting of a sequence of
components—a11 of which are of the same type.

A natural ordering of the components is defined through the
sequence, and at any instance only one component is directly
accessible. The other components are accessible by progressing

sequentially through the file. The number of components, called
the Ifinath of the file, is not fixed by the file type

definition. This is a characteristic which clearly distinguishes
the file from the array. A file with no components is said to be
empty ,

^YPB <identifier> = file uf <type>;

The declaration of every file variable f automatically
introduces a huZlQr . denoted by ff , of the component
type. It can be considered as a window through which one can
either inspect (read) existing components or append (write) new
components , and which is automatically moved by certain file
operators .

The sequential processing and the existence of a buffer variable
suggest that files may be associated with s econdarv stnraap and
aarlpherals . Exactly how the components are allocated is
implementation dependent, but we assume that only some of the
components are present in primary store at any one time, and
only the component indicated by ft is directly accessible.

When the window ft is moved beyond the £nd flf a file f , the
standard Boolean function eof(f) returns the value true,
otherwise false. The basic file-handling operators are:

reset (f) resets the file window to the beginning for the
purpose of reading, i .e . assigns to ft the value
of the first element of f . eof(f) becomes false
if f is not empty; otherwise, ft is not defined,
and eof(f) remains true.

rewrite(f) precedes the rewriting of the file f. The current
value of f is replaced with the empty file.
eof(f) becomes true, and a new file may be
written.

get (f) advances the file window to the next component;
i .e . assigns the value of this component to the
buffer variable ft • If no next component exists ,
then eof (f) becomes true, and the resulting value
of ft is not defined. The effect of get (f) is

56

defined only if eof(f) is false prior to its
execution •

put(f) appends the value of the buffer variable fT to |
the file f. The effect is defined only if prior |
to execution the predicate eof(f) is true, eof(f) j
remains true, and fT becomes undefined. i

In principle, all the operations of sequential file generation
and inspection can be expressed entirely in terms of the four
primitive file operators and the predicate eof. In practice, it
is often natural to combine the operation of advancing the file
position with the access to the buffer variable. We therefore
introduce the two procedures read and write as follows:

read(f,x) is equiv. to x :* fT: get(f)
write(f,x) is equiv. to fT :«* x; put(f)

Note: The Standard defined by the Report mentions these
abbreviations only for x being of type char.

The advantage of using these procedures lies not only in
brevity, but also in conceptual simplicity, since the existence
of a buffer variable fT, whose value is sometimes undefined, may
be ignored. The buffer variable may, however, be useful as a
“lookahead” device.

Examples of declarations -and-
var data : file a£. integer;

a : integer;

statements with files

a :* dataT: get(data)
read(dat a ,a)

var club : file nf person;
P : person;

clubT :* p; put(club)
writ e(clu b ,p)

Examples of partial programs:
1. Read a file f of real numbers and compute their sum S,

S : * 0 ; r es et (f) ;
while not eof(f) djj.

begin read(f,x); S :« S + x
end

2. The following program fragment operates on two files of
ordered sequences of integers

f1,f2, ... , fm and g1*g2, ... ,gn

such that f(i+1) >■ f(i) and g(j+1) >= g(j) » for all i,j
and merges them into one ordered file h such that

h(k+1) >» h(k) for k » 1,2, ... ,(m+n-1).

It uses the following variables:
endfg : Boolean;
f,g,h : file of. integer

57

{ program part
•merge f and g into h }

jlfiflin reset(f); reset(g); rewrite(h);
endfg ; *» eof(f) flu eof(g);
while not endfg dn

kaaln i£ fT<gT then
tififlin hT :« f T; get(f):

endfg ;* eof(f)
end else

fa-Sflin hT :« gT ; get (g) ;
endfg :« eof(g)

end !

put(h)
end ;

SlhAle not eof(g) dn

b.SPln hT ;» gT; put(h);
get(g)

£M;
w-hlle ojQjL eof(f) xia
kSflin hT :« fT; put(h);

get(f)
end

end

Files may be local to a program (or local to a procedure), or
they may already exist outside the program. The latter are
called srnal .f.llss » External files are passed as parameters
in the program heading (see chapter 13) into the program.

A. Textfiles

Files whose components are characters are called textfiles.
Accordingly, the standard type text is defined as follows:

tvDe text » file nf char;

Texts are usually subdivided into lines . A straight-forward
method of indicating the separation of two consecutive lines is
by using control characters. For instance, in the ASCII
character set the two characters ex. (carriage return) and
(line feed) are used to mark the end of a line. However, many
computer installations use a character set devoid of such
control characters; this implies that other methods for
indicating the end of a line must be employed.

We may consider the type text as being defined over the base
type char (containing printable characters only) extended by a
(hypothetical) line separator character. This control character
cannot be assigned to variables of type char, but can be both

58

recognized and generated by the following special textfile
operators :

writeln(x) terminate the current line of the textfile x

readln(x) skip to the beginning of the next line of the
textfile X (xt becomes the first character of the
next line)

eoln(x) a Boolean function indicating whether the end of
the current line in the textfile x has been
reached, (If true, xf corresponds to the position
of a line separator, but xf is a blank.)

If f is a textfile and ch a character variable, the following
abbreviated notation may be used in place of the general file
operators ,

abbreviated form expanded form

write (f .ch) ft ch; put(f)

read(f.ch) ch := ft ; get (f)

The following program schemata use the above conventions to
demonstrate some typical operations performed on textfiles.

1. Writing a text y. Assume that P (c) computes a (next)
character and assigns it to parameter c. If the current line
is to be terminated, a Boolean variable p is set to true;
and if the text is to be terminated, q is set to true.

rewrite (y);

rep eat P (c); write(y.c)

until p ;
writeln (y)

until q

2, Reading a text x. Assume that Q (c) denotes the processing of
a (next) character c, R denotes an action to be executed
upon encountering the end of a line.

reset (x);
whila nat. eof(x)
liaaln

while not eoln (x) iln
taflin read (x .c) ; Q (c)
nnl;

R ; readln(x)

&dA

59

3. Copying a text x to a text y, while preserving the line
structure of x ,

reset(x); rewrite(y);
not eof(x)

ilfiSLin {copy a line}
Ehile not eoln(x)

ilfiflin read (x ,c); write (y,c)
&nsL;

readln(x); writeln(y)

B. The standard files “input** and **output

^ textfiles input and output** usually represent the
standard I/O media of a computer installation (such as the card
reader and the line printer). Hence, they are the principal
communication line between the computer and its human user.

Because these two files are used very frequently, they are
considered as default values** in textfile operations when the
textfile f is not explicitely indicated. That is

is equivalent to

write(ch) write (output ,ch)

read (ch) read(input,ch)

writeln writeln (output)

r eadln readln (input)

eof eof(input)

eoln eoln (input)

Note ; The standard
applied to the file

procedures reset (rewrite)
input (output).

must no t be

Accordingly. for the case where x is ‘*input*‘ and y is “output**,
the first two of the program schemata can be expressed as
follows; (assume var ch: char)

Writing a text on file “output“:

naaeat
Haas at P(ch); write (ch)
until P:
writeln

until q

60

Reading a text from file "input”:

while nfliL eof do.

hpgin {process a line}

while not eoln jla

henin read(ch); Q (ch)

R ; r eadin

SJHii

Further extensions of the procedures write and read (for the

convenient handling of legible input and output data) are

described in chapter 12,

The next two examples of programs show the use of the textfiles

input and output. (Consider what changes would be necessary if

only get and put, not read and write, are to be used.)

{ program 9,1 —— frequency count of letters in input file }

program fcount (input,output);

var ch : char;

count: aili:ay.['a ' •.'z *] integer;

letter: p et of. 'a ', . *z ';

begin letter := ['a'..'z'];

for ch := 'a ' tn 'z' da count[ch] := 0;

while, aei. eof de

defliQ
while pat eoln da

begin read(ch); write(ch);

i£ ch in letter then count[ch] :» count[ch]+1

end:
writeln; readln

end

end.

In some installations when a textfile is sent to a printer, the i
first character of each line is used as a printer control |

character; i .e . this first character is not printed, but instead [

interpreted as controlling the paper feed mechanism of the I
printer. The following conventions are in wide use: I

blank

'0'

'1 •

feed one line space before printing

feed double space before printing

skip to top of next page before printing

no line feed (overprint)

I
61

j The following program inserts a blank at the beginning of each
I line, resulting in normal single space printing.

{ program 9.2 — insert leading blank }

arunrafP insert (input .output);

var ch: char;

Jaaflin
jfltiiilfi not eof jia
llfiflin write (• ');

Mobile Hilt, eoln do

Jlfiain read(ch); write(ch)
s,asL;

writeln; readln
end

Bnd .

If read and

parameter . the
and output are
the parameter

write are used without indication
default convention specifies that the
assumed; in which case, they must be
list of the program heading.

of a file
files input

mentioned in

10

PniKlER ULLSl

A stat 1n variable (staticly allocated) is one that is declared
in a program and subsequently denoted by its identifier. It is
called static, for it exists (i.e, memory is allocated for it)
during the entire execution of the block to which it is local, A
variable may, on the other hand, be generated dynamically
(without any correlation to the static structure of the program)
by the procedure new. Such a variable is consequently called a

dYnamin variable,*

Dynamic variables do not occur in an explicit variable
declaration and cannot be referenced directly by identifiers.
Instead, generation of a dynamic variable introduces a □nint er
value Uhich is nothing other than the storage address of the
newly allocated variable). Hence, a pointer type P consists of
an unbounded set of values pointing to elements of a given type
T, P is then said to be bound to T, The value nil is always an
element of P and points to no element at all,

type <identifier> * T <type identlfier>;

If, for example, p is a pointer variable bound to a type T by
the declaration

var p : TT

then p is a reference to a variable of type T, and pt denotes
that variable. In order to create or allocate such a variable,
the standard procedure new is used. The call new(p) allocates a
variable of type T and assigns its address to p.

Pointers are a simple tool for the construction of complicated
and flexible data structures. If the type T is a record
structure that contains one or more fields of type TT, then
structures equivalent to arbitrary finite graphs may be built,
where the T's represent the nodes, and the pointers are the

edges ,

As an example, consider the construction of a "data bank' for a
given group of people. Assume the persons are represented by
records as defined in chapter 7, One may then form a chain or
linked list of such records by adding a field of a pointer type
as shown below,

type link = fperson;
• • •

person = record
• • •

next ; link;

• • •

end !

A linked list of n persons can be represented as in figure 10,a.

63

Figure 10.a Linked list

A variable of type link, called *‘first'* points to the first
element of the list. The link of the last person is nil.

If we assume that the file “input” contains n social security
numbers, then the following code could have been used to
construct the above chain,

V-ar first, p: link; i: integer;

first nil:
for i : = 1 n dn
bSffin read(s); new(p);

P T .next :* first;
p T .ss : « s ;
first : p

end

For purposes of access, one introduces another variable, say pt,
of type link and allows it to move freely through the list. To
demonstrate selection, assume there is a person with social
security number equal to n and access this person. The strategy
is to advance pt via link until the desired member is located:

pt :« first ;
while ptT.ss <> n xia Pt : *= ptT.next

In words this says, “Let pt point to the first element. While
the social security number of the member pointed to (referenced)
by pt does not equal n, advance pt to the variable indicated by
the link (also a pointer variable) of the record which pt
currently references." Note in passing that

first! .next!.next
accesses the third person.

Note that this simple search statement works only, if one is
sure that there is at least one person with security number n on
the list. But is this realistic? A check against failing to
recognize the end of the list is therefore mandatory. One might
first try the following solution:

pt :« first;

MLllile (pt <> nil) and (ptT.ss <> n) ila Pt :« ptT.next

64

But recall section 4.A. If pt - nil» the variable ptT»
referenced in the second factor of the termination condition,
does not ex ist at all. The following are two possible solutions
which treat this situation correctly:

(1) pt :* first; b :* true;
while (pt <> nil) ami b da

if ptT.ss - n then b false else pt ptT.next

(2) pt : « first;
while pt <> nil £Lq
begin if ptT.ss « n then goto 13;

pt :■ pt T .next
end

To pose another problem, say one wishes to add the sample person |
to the bank. First a space in memory must be allocated, and a
reference created by means of the standard procedure nJBJfiL*

new(p) allocates a new variable v and assigns
the pointer reference of v to the
pointer variable p. If the type of v is
a record type with variants, then new(p)
allocates enough storage to accommodate
all variants. The form

new(p,t1, ... ,tn) can be used to allocate a variable of
the appropriate size for the variant
with tag field values equal to the
constants t1...tn. The tag field values;
must be listed contiguously and in the
order of their declaration. Any trailing
tag fields may be omitted. This does
imply assignment to the tag fields.

Warning: if a record variable pT is created by the second form
of new, then this variable must not change its variant during
program execution. Assignment to the entire variable is not
allowed; however one can assign to the components of pT«

The first step in programming a solution to our problem posed
above, is to introduce a pointer variable. Let it be called
newp• Then the statement

new(newp)

will allocate a new variable of type Person.

65

In the next step the new variable, referenced by the pointer
newp, must be inserted after the member referenced by pt. See
figure 10.b.

Figure lO.b Before

Insertion is a simple matter of changing the pointers:

newpT.next :* ptT.next;
ptT.next := newp

Figure 10,c illustrates the result.

66

Deletion of the member following the auxiliary pointer pt is
accomplished in the single instruction:

ptT.next :» ptT .next? .next

It is often practical to process a list using 2 pointers—one
following the other. In the case of deletion, it is then likely
that one pointer—say p1—precedes the member to be deleted, and
p2 points to that member. Deletion can then be expressed in the

single instruction:

pit.next :* p2T .next

One is, however, warned that deletions in this manner will, in
most installations, result in the loss of usable (free) store.
A possible remedy is to maintain an explicit list of deleted
elements. New variables will then be taken from^this list (if it
is not empty) instead of calling the procedure *’new**. A deletion
of a list element now becomes a transfer of that element from

the list to the free element list.

piT.next :* p2t.next;
p2t.next := free;
free :* p2

Linked nlInnatIan is the most efficient representation for ;
inserting and deleting elements. Arrays require shifting down j
(up) of every element below the index in the case of insertion ;
(deletion), and files require complete rewriting.

For an example involving a tree structure instead of a linear
list, refer to chapter 11 (program 11.5).

A word to the wise

Pascal provides a wide variety of data structures. It is left to |
the programmer to evaluate his problem in detail sufficient to *
determine the structure best suited to express the situation and
to evaluate the algorithm. As indicated by the *'data bank*' ^
example, linked allocation is especially nice for insertion and |
deletion. If, however, these operations happen infrequently, but}
instead efficient access is mandatory, then the representation]
of the data as an array of records is usually more appropriate, j

11
PJIIULQUJES FUNCTIONS

As onB Qfrows in the art of computer propramminp, one constructs

programs in a sequence of C,£finement aiLfias.. At each step the
programmer breaks his task into a number of subtasks, thereby
defining a number of partial programs. Although it is'possible
to camouflage this structure, this is undesirable. The concept

of the anaaadaria (or autooutine) allows the display of the
subtasks as explicit subprograms .

A . Procedures

The anaaatlure declaratinn serves to define a program part and to
associate it with an identifier, so that it can be activated by
a 0.r,QCec^V^r? g^liatem^pt . The declaration has the same form as a
program. except it is introduced by a anocedure heading instead
of a program heading.

Recall the program part that found the minimum and maximum
values in a list of integers. As an extension, say that
increments of j1.*.jn are added to a[1].,.a[n], then min and max

are again computed. The resulting program, which employs a
procedure to determine min and max, follows.

{ program 11.1
extend program 6,1 }

program minmax2(input.output);

68

coast n = 20;
var a : array [1. .n1 siL integer;

i.j : int eger ;
procedure minmax;

war i :1,.n; u .v .min .max rinteger;
begin min := a[1] ; max := min; i := 2;

while i<n da
a[i+1] begin u

if u>v
:= a[i];
then

y : =

be,flip if u>max t hen max : = u ;
V <m i n

end else
then min : = y

dagln jf y >max then max : = y ;

jsnd:

if u <min iiion min : “ u

i := i+2

end,;
if i=n t hen

jL£ a[n]>max then max :« a[n]
else a[n] <min then min :« a[n] ;

writeln (min .max); writeln
end : {minmax}

begin {read array}
for i : = 1 JLa n dll

begin read(a[i]); write(a[i] :3)
s.nA;

writeln;
minmax ;
ISLXL i 1= 1 ta n

begin read(j); a[i] := a[i]+j; write(a[i];3)

sod:
writeln ;
minmax

ond .

-1 -3 4 7
-6

8 54 23 -5
79

3 9 9 9 -6 45 79 79 3 5

44 40 7 15 9 88 15 -4 7 43 12 17 -7 48 59 39 9 7 7 12
-7 88

Although simple, this program illustrates many points:

1. The simplest form of the PROCEDURE HEADING, namely:

<identifier >;

69

LOCAL VARIABLES, Local to procedure minmax are the
variables i, u, v, min, and max. These may be referenced
only within the scope of minmax; assignments to these
variables have no effect on the program outside the scope
of minmax ,

3, GLOBAL VARIABLES, Global variables are a, i, and j. They
may be referenced throughout the program, (e,g. The first
assignment in minmax is min :« q[1l ,)

4, NAME PRECEDENCE , Note that i is the name for both a
global and a local variable. These are not the same
variable! A procedure may reference any variable global
to it, or it may choose to redefine the name. If a
variable name is redefined, the new name/type association
is then valid for the scope of the defining procedure,
and the global variable of that name (unless passed as a
parameter) is no longer available within the procedure
scope. Assignment to the local i (e .g . i :« i+2) has no
effect upon the global i; and since i denotes the local
variable, the global variable i is effectively
inaccessible .

It is a good programming practice to declare every
identifier which is not referenced outside the procedure,
as strictly local to that procedure. Not only is this good
documentation, but it also provides added security. For
example, i could have been left as a global variable; but
then a later extension to the program which called
procedure minmax within a loop controlled by i would
cause incorrect computation,

5, The PROCEDURE STATEMENT, In this example the statement,
"minmax** in the main program activates the procedure.

Examining the last example in more detail, one notes that minmax
is called twice. By formulating the program part as a
procedure—i .e . by not explicitly writing this program part
twice—the programmer conserves not only his typing time, but
also space in memory. The static code is stored only once, and
space defining local variables is activated only during the
execution of the procedure.

One should not hesitate, however, from formulating an action as
a procedure—even when called only once—if doing so enhances
the readability. Defining development steps as procedures makes
a more communicable and verifiable program.

Often necessary with the decomposition of a problem into
subroutines is the introduction of new variables to represent
the arguments and the results of the subroutines. The purpose of
such variables should be clear from the program text.

The following program extends the above example to compute the
minimum and maximum value of an array in a more general sense.

{ program 11,2
extend program 11.1 }

program minmax3(input .output) ;

70

\

const n ® 20;
type list = • n] aL integer;
var a,b : list;

i min 1 ,min2,max1.max2 : integer;

procedure minmax fvar g:list; ^ax j .k :integer) ;
yar i : 1 . .n ; u .v :integer;

begin j : = g [1] ; k : = j ; i : = 2;
J^ilii£ i<n dii
begin u :=g[i]; v :=g[i + 1];

i£ u >v iban
begin u >k then k :* u ;

If v<j ftifin j :* y
3.1^0.

begin y >k then k ;= y;
if u < j flian j : = u

££iil;
i : = i +2

£jiil;
if i=n iJifiin

if g[n]>k then k := g[n]
£i5.£ if g[n] <j iJifin j g[n] ;

end : {minmax}

begin {read array}
fjan i 1 fil n iln

begin read(a[i]); write(a[i] :3) gnd ;
writeIn;
minmax (a ,min 1 .max 1);
writeln(minl.maxl.maxl-minl); writeln;
Lar. i := 1 ffl n sLo.

begin read(b[i]); write(b[i] :3) end ;
writeln ;
minmax (b .min2,max2);
writeln(min2,max2,max 2-min2);
writeln(abs(min1-min2),abs(max1-max2)); writeln ;
for i : * 1 n dQ

begin a[i] a[i] + bli]; write(a[i]:3) ££Ld .*
writeln;
minmax (a .min 1 .max 1) ;
writeln (min 1 .max 1 .max 1-min 1)

-1 -3 4 7 8 54 23 -5 3 9
-6 79 85

45 43 3 8 1 34 -8 1 4 34
-8 45 53

2 34

44 40 7 15 9 88 15 -4 7 43

-7 88 95

9 9 -6 45 79 79 3 1 15

3 8 -1 3 -2 -4 6 6 6 7

12 17 -7 48 77 75 9 7 7 12

71

In program 11,2, one encounters the second form of the procedure
heading:

procedure <identifier> (<formal parameter section>
{; <formal parameter section>});

The formal parameter section lists the name of each formal
parameter followed by its type. It is followed by the
declaration part, which introduces the objects local to the
procedure,

The labels in the label definition part and all identifiers
introduced in the formal parameter part, the constant definition
part, the type definition part, the variable, procedure, or
function declaration parts are local to the procedure
declaration which is called the scooe of these objects. They are
not known outside their scope. In the case of local variables,
their values are undefined at the beginning of the statement
part,

E.ar.amfit ers provide a substitution mechanism that allows a
process to be repeated with a variation of its arguments, (e,g,
minmax is called twice to scan array a and once to scan array
b,)

One notes a correspondence between the procedure heading and the
procedure statement. The latter contains a list of actual
oaramet ers■ which are substituted for the corresponding formal
parameters that are defined in the procedure declaration. The
correspondence is established by the positioning of the
parameters in the lists of actual and formal parameters. There
exist four kinds of parameters: so-called value parameters,
variable parameters, procedure parameters (the actual parameter
is a procedure identifier), and function parameters (the actual
parameter is a function identifier).

Program 11,2 shows the case of the variable oaramet er . The
actual parameter must Jig. g variable: the corresponding formal
parameter must be preceded by the symbol var and represents this
actual variable during the entire execution of the procedure.
Furthermore, if x1,,xn are the actual variables that correspond
to the formal variable parameters v1,,vn, then x1,,xn should be
distinct variables ,

All address calculations are done at the time of the procedure
call. Hence, if a variable is a component of an array, its index
expression is evaluated when the procedure is called.

To describe the memory allocation pictorially, one could draw an
arrow for each variable parameter from the name of the formal
parameter to the memory location of the corresponding actual
parameter. Any operation involving the formal parameter is then
performed directly upon the actual parameter. Whenever the
parameter represents a resuIt of the procedure—as is the case
with j and k above—it must be defined as a variable parameter.

When no symbol heads the parameter section, the parameter(s) of

72

this section are said to be value □ arameter (s) . In this case the
actual parameter must an expression (of which a variable is a
simple case). The corresponding formal parameter represents a
local variable in the called procedure. As its initial value,
this variable receives the current value of the corresponding
actual parameter (i.e. the value of the expression at the time
of the procedure call). The procedure may then change the value
of this variable by assigning to it: this cannot, however,
affect the value of the actual parameter. Hence, a value
parameter can never represent a result of a computation.

The difference in the effects of value and variable parameters
is shown in program 11.3.

{ program 11.3
procedure parameters }

program parameters(output):

var a .b! integer;
procRdure h(x: integer; Y" integer):
begin x :«x+1;y :*y+1;

wr iteln (x .y)
end;
begin a :« 0; b := 0;

h (a .b);
wr it eln (a .b)

t 0 trans f er a r esult of the
is gene rally pr eferred, The

an d one is prot ected against
H owever in t he case where a

e (e .g . an arr ay) . one should be

ion is rel at iv ely expensive, and
al locate the copy may be large.

ele ment in the arra y occurs only
fin e the p aram et er as a variable

In program 11.2 none of the values in array g are altered; i.e.
g is not a result. Consequently g could have been defined as a
value parameter without affecting the end result. To understand
why this was not done. it is helpful to look at the
implementation.

A procedure call allocates a new area for each value parameter;
this represents the local variable. The current value of the
actual parameter is “copied** into this location; exit from the
procedure simply releases this storage.

If a parameter is not used
procedure. a value parameter
referencing is then quicker,
mistakenly altering the data,
parameter is of a structured typ
cautious, for the copying operat
the amount of storage needed to
Because referencing of each
once, it is desirable to de
parameter .

1

73

One may change the dimension of the array simply by redefining
n. To make the program applicable for an array of reals, one
needs only to change the type and variable definitions; the
statements are not dependent upon integer data .

The use of the procedure identifier within the text of the
procedure itself implies recursive execution of the procedure.
Problems whose definition is naturally recursive, often lend
themselves to recursive solutions. An example is the following
program. Given as data are the symbolic expressions:

(a +b) * (c -d)
a+b *c-d
(a + b)* c-d
a +b * (c -d)
a *a *a *a
b +c * (d +c *a *a) *b +a .

which are formed according to the syntax of figure 11.a. A
period terminates the input.

expression

factor

"^^identif ie^ .

^ expression —^

identifier

letter

Figure 11.a Expressions

74

The task is to construct a program to convert the expressions
into postfix form (Polish notation). This is done by
constructing an individual conversion procedure for each
syntactic construct (expression, term, factor). As these
syntactic constructs are defined recursively, their
corresponding procedures may activate themselves recursively.

75

{ program 11,4

conversion to postfix form }

Program postfix (input,output);

V.ail ch : char ;

find ;
begin

find;

rep eat read(ch)
until (cho* ') and not eoln (input)

op
expression;
: char ;

procedure term;

factor ;
dnnln if ch =' (' t hen

begin find; expression;
and else write(ch);
find

end; {factor}

{ch) }

bgflin factor;
while ch='*' dn
begin find; factor; write('*')

end
end ; {term}

begin term;

Mobile (ch = %')i2ii(ch = '-') dn
deain op ch; find; term; write(op)
end

end : {expression}

begin find;
repeat write('

expression ;
writ eln

until ch = ' .'

end •

');

ab +cd-*
abc*+d-
a b +c -^-d -
abed-*+
a a *a *a *
bedea *a *+*b *+a +

The binary free is a data structure that is naturally defined in
recursive terms and processed by recursive algorithms. It
consists of a finite set of nodes that is either empty or
consists of a node (the root) with two disjoint binary trees.

76

called the left and right subtrees [61 , Recursive procedures for
generating and traversing binary trees naturally reflect this
mode of definition.

Program 11,5 builds a binary tree and traverses it in pre-, in-,
and postorder. The tree is specified in preorder, i,e. by
listing the nodes (single letters in this case) starting at the
root and following first the left and then the right subtrees so
that the input corresponding to figure 11.b is;

she , ,de,,fg,,.hi..Jkl..m..n..

where a point signifies an empty subtree.

77

{ program 11.5
binary tree traversal 1

program traversal(input,output);

type ptr « Tnode;
node * record info : char;

llink,rlink ; ptr
end ;

I var root : ptr; ch ; char;

j CXQCsdure preorder(p : ptr);
I]i£ja.in LL ponll than

begin write(pT .info);
preorder(pT .llink);
preorder(pT .rlink)

end
end: {preorder}

procedure inorder(p : ptr);

bgflin If. ponll then
begin inorder(pT .llink);

write(p T .info); Iinorder(pT .rlink)
end

! end: (inorder)
i
I procedure postorder(p : ptr);

I bsflin If ponll then
^ begin post order(pT .llink);

postorder(pT.rlink);
write(p T .info)

end

end: {postorder}

prncedure enter(var p:ptr);
begin read(ch); write(ch);

If cho*.* then
begin new(p);

P T .info ;= ch;
ent er(p T .llink);
ent er(p T.rlink);

end
else p :* nil

end I{enter}

becin

writ e(* ')
writ e(' ')
writ e(' ')
writ e(' *)

end ,

enter(root); writeln;
preorder(root); writeln;
inorder(root); writeln;
post order(root); writeln

abc..de..fg..•
abcdefghijklmn
cbedgfaihlkmjn
cegfdbilmknjha

hi jkl..m. .n..

I

78

!

The reader is cautioned against applying recursive techniques j
indiscriminately. Although appearing **clever*\ they do not |
always produce the most efficient solutions .

If a procedure P calls a procedure Q and Q also calls P, then |
either P or Q must be *'pre-announced ** by a forward declaration |
(section 11 .C), ‘

The standard procedures in Appendix A are predeclared in every
implementation of Pascal. Any implementation may feature '
additional predeclared procedures. Since they are, as all j

standard objects , assumed to be declared in a scope surrounding
the user program, no conflict arises from a declaration
redefining the same identifier within the program. The standard
procedures get, put, read, write, reset, and rewrite were
introduced in chapter 9. Read and write are further discussed in
chaoter 12,

B . Functions

Functions are program parts (in the same sense as procedures) j
which compute a single scalar or pointer value for use in the j
evaluation of an expression. A function designator specifies the j
activation of a function and consists of the identifier (
designating the function and a list of actual parameters. The !
parameters are variables, expressions, procedures, or functions
and are substituted for the corresponding formal parameters. i

The function declaration has the same form as the program, with i

the exception of the fu net ion heading which has the form: !

<identifier > <result type> ;

function <identifier> (<formal parameter section>
{ ; <formal parameter section>}) : <result type> ;

As in the case of procedures, the labels in the label definition
part and all identifiers introduced in the formal parameter
part, the constant definition part, the type definition part,
the variable, procedure, or function declaration parts are local
to the function declaration, which is called the s cooe of these
objects. They are not known outside their scope. The values of
local variables are undefined at the beginning of the statement
part .

The identifier specified in the function heading names the
function. The result type must be a scalar, subrange, or pointer
type. Within the function declaration there must be an executed
assignment (of the result type) to the function identifier. This
assignment ’'returns** the result of the function.

I

79

The examples to date have only dealt with variable and value
parameters. Also possible are procedure and function parameters.
Both must be introduced by a special symbol; the symbol
anscedure. signals a formal procedure parameter; the symbol
£u.lict 10 n , a formal function parameter. The following program
finds a zero of a function by bisection; the function is
specified at the time of the call.

{ program 11,6

find zero of a function by bisection }

program bisect (input , output);

const eps =1e-14;
var X ,y :real ;

£HPC,t ion zero (f unct ion f: real; a.b: real): real;
X ,z :real; s rboolean ;

ilfi.qln S := f(a)<0;
repeat x := (a+b)/2.0;

2 f (x);
i£ (z <0)=s then a := x else b := x

until abs(a-b)<eps;
zero := x

and. I {zero}

begin {main}

read (x .y); writeln (x ,y ,z ero (s in .x ,y)) ;
r ead (x ,y); writ el n (x ,y ,z er o (cos ,x ,y))

arm.

-1 .OOOOOOOOOOOOe+OO 1 .000000 000 00Oe+00 -7.105427357601e-15
1.OOOOOOOOOOOOe+OO 2.OOOOOOOOOOOOe+OO 1.570796326795e+00

An assignment (occurring in a function declaration) to a
non-local variable or to a variable parameter is called a side
affaat. Such occurrences often disguise the intent of the
program and greatly complicate the task of verification. (Some
implementations may even attempt to forbid side effects.) Hence,
the use of functions producing side effects is strongly
discouraged .

As an example, consider program 11.7.

80

{ program 11.7
test side effect }

program sideffect (output);

var a ,z : integer :
function sneaky (x: integer): integer;
hpain 2 :« z-x ; {side effect on z}

sneaky :« sqr(x)

sxui:
begin

2 :« 10; a := sneaky(z); wr it eln (a .z);
z := 10; a :« sneaky(IO) * sneaky(z); wr it eln (a .z);
z :«* 10; a sneakyCz) * sneaky(IO); writeln(a,z)

end .

0
0

100
0

10000 -10

The next example formulates the exponentiation algorithm of

program 4.B as a function declaration.

81

{ program 11,8
extend program 4.8 }

program expon2(output);

Y.ar P i ,spi : real;

fun^tilUl power (x :real; y:integer): real: {y>“0}
var z : real;

begin z :« 1;
wjillfi y>0 xla
hentn

while not odd(y) xln
^1 n y := y jdiy, 2; X ;« sqr(x)
&dA :

y !“ y-1; z :» x*z
:

power ;« z

£Jld; {power}

^eain pi := 3.14159;
writeln(2.0,7,power(2.0 .7));
spi : a power(pi,2);
writeln(pi ,2,spi):
wr iteln (sp i .2 .power (spi .2)) ;
wr iteln (p i ,4 .power (p i .4))

&dA •

2.000000000000e+00
3.141590000000e+00
9.869587728100e+00
3.141590000000e+00

7 1 .280000000000e+02
2 9.869587728100e+00
2 9.740876192266e+01
4 9.740876192266e+01

The appearance of the function identifier in an expression
within the function itself implies recursive execution of the
function .

82

{ program 11.9
recursive formulation of gcd }

program recursivegcd(output);

Van X .y .n • integer;

function gcd(m.n: integer):integer ;
begin i£ n=0 t hen gcd := m

else gcd := gcd(n,m mod n)
£xui: {gcd}

procedure try (a ,b rinteger);
begin writeln (aVb ,gcd(a .b))
end ;

kfi-fllD try (18.27);
try(312.2142);
try (61.53);
try (98.868)

end .

18 27 9
312 2142 6

61 53 1
98 868 14

Function calls may occur before the function definition if there
is a forward reference (section 11.C).

The standard functions of Appendix A are assumed to be
predeclared in every implementation of Pascal. Any
implementation may feature additional predeclared functions.

C . Remarks

Procedure (function) calls may occur before the procedure
(function) definition if there is a forward referenno . The
form is as follows: (Notice that
eventual result type are written
reference .)

the parameter list and
nnlY in the forward

83

argcedurR EI(x; T); forward;
Proceriurp p(y; j);

begin

Q (a)
and:

arocedurR Q: {parameters are not repeated}
begin

P(b)

ami;
begin

P(a);
Q(b)

ami.

Procedures and functions which are used
other procedures and functions must have
poly. (Consequently, it is not necessary to
whether a parameter is called by value or by

as parameters to
value parameters
test at run time
address ,)

component of a packed structure must not appear as an
variable parameter. (Consequently, there is no need to

pass addresses of partwords, and to test at run time for the
internal representation of the actual variable.)

File parameters must be specified as iiac-parameters

12
IMP-UT, MO OUTPUT

The problem of communication between man and computer was j
already mentioned in chapter 9. Both learn to underS-taoil through
what is termed pattern r pr.nanit ion. Unfortunately, the patterns
recognized most easily by man (dominantly those of picture and
sound) are very different from those acceptable to a computer
(electrical impulses). In fact, the expense of physically i

transmitting data--implying a translation of patterns legible to |
man into ones legible to a computer, and vice versa—can be as
costly as the processing of the transmitted information.
(Consequently, much research is devoted to minimizing the cost
by “automatizing*' or “automating** more of the translation
process.) This task of communication is called input and output

handling (I/O).

The human can submit his information via inPUlL dev.in&a (e.g. key
punches, card readers, paper tapes, magnetic tapes, terminals)
and receive his results via nutout deVics.SL (e.g. line printers,
card and paper tape punches, terminals, visual display units).
Common to both—and defined by each individual installation—is
a set of legible characters (chapter 2). It is over this
character set that Pascal defines the two standard textfile
variables (program parameters) inP.Llt. and output, (also see [
chapt er 9).

Textfiles may be accessed through the standard file procedures !
get and put. This can, of course be quite cumbersome as these |
procedures are defined for single character manipulation. To
illustrate, consider one has a natural number stored in a
variable x and wishes to print it on the file output. Note that
the pattern of characters denoting the decimal representation of
the value will be quite different from that denoting the value
written as a Roman numeral (see program 4.7). But as one is
usually interested in decimal notation, it appears sensible to
offer built-in standard transformation procedures that translate
abstract numbers (from whatever computer-internal representation
is used) into sequences of decimal digits and vice versa.

The two standard procedures read and writB ar'e thereby extended
to facilitate the analysis and the formation of textfiles. The
syntax for calling these procedures is non-standard, for they
can be used with a variable number of parameters whose types are

not fixed.

A. The procedure read

Let v1,v2, ... , vn denote variables of type char, integer, or

real, and let f denote a textfile.

1. read(v1, ... , vn) stands for
read(input,v1, ... , vn)

85

2, read(f,v1, ... ^ vn) stands for
be£in read(f ,v1): ... ; read(f.vn) &nsi

3. readln(v1.vn) stands for
readln (input .V 1, ... ^ vn)

4, readln(f.v1. vn) stands for
ii£aia read(f.vl); ... ; read(f.vn); readln(f)

The effect is that after vn is read (from the textfile f),
the remainder of the current line is skipped. (However, the
values of v1...vn may stretch over several lines.)

5. If ch is a variable of type char, then ^
read(f.ch) stands for

ch ft; get(f) end

If a parameter v is of type integer (or a subrange thereof)
or real. a sequence of characters, which represents an
integer or a real number according to the Pascal syntax, is
read. (Consecutive numbers must be separated by blanks or
ends of lines .)

examples :

Read and process a sequence of numbers where the last value
is immediately followed by an asterisk. Assume f to be a
textfile. X and ch to be variables of types integer (or real)
and char respectively.

reset (f);

read(f .X .ch);
P(x)

until c h = * * *

Perhaps a more common situation is when one has no way of
knowing how many data items are to be read, and there is no
special symbol that terminates the list. Two convenient
schemata follow. In the first, single items are processed.

reset (f);
while xifli eof (f) dn

k&ala read(f.x); skip blanks (f) ;
P (x) ;

&dA

where skip blanks(f) stands for the statement
(ffo' ') and. not eof (f) dn get (f)

The second schema processes n-tuples of numbers;

86

reset (f);
not eof(f) da

hRoin reacl(f,x1.x n); skip blanks (f);
P (x 1.X n) :

and

(For the above schema to function properly, the total number
of single items must be a multiple of n.)

The procedure read can also be used to read from a file f whi

is not a textfile.
read(f *x)

in this case stands for
begin x := fT ; get(f) and

B , The procedure write

The procedure write appends character strings (one or more
characters) to a textfile. Let p1.p2, ... ,pn be parameters of
the form defined below (see 5). and let f be a textfile. Then:

1. write(p1.pn) stands for
write (output ,p 1, ... , pn)

2. write(f,p1.pn) stands for
begin wr it e (f ,p 1) ; ... I write(f,pn) find

3. writeln(p1. ... , pn) stands for
wr it eln (output ,p 1, ... , pn)

4. writeln (f .p 1, ... , pn) stands for
begin write(f,p1); ... ; write(f,pn): writeln(f) £Dd

This has the effect of writing p1, ... , pn and then
terminating the current line of the textfile f.

5. Every parameter pi must be of one of the forms;

e
e : e 1
e ; e 1 : e2

where e, e1, and e2 are expressions.

6, e is the value to be written and may be of type char,
integer, real. Boolean, or it may be a string. In the first
case, write(f,c) stands for

ft :« c ; put (f)

87

7. el—called the minimum field width—is an optional control.
It must be a natural number and indicates the minimum number

characters to be written. In general, the value e is
written with e1 characters (with preceding blanks). If e1 is
too small , more space is allocated. (Reals must be written

with at least one preceding blank; however, this restriction
does not apply to integer values.) If no field length is
specified. a default value (implementation dependent) is
assumed according to the type of the expression e.

8, e2 called the £ra,Ction IfiQgtIl—is an optional control and
is applicable only when e is of type real. It must be a
natural number and specifies the number of digits to follow
the decimal point. (The number is then said to be written in
fixed-point notation.) If no fraction length is specified
the value is printed in decimal floating-point form.

^*0. If the value e is of type Boolean. then the standard
identifier true or false is written.

Py'ocedure write can also be used to write onto a file r
which IS not a textfile.

write(f ,x)
in this case stands for

kgflia fT : = x; put(f) en(j

13
PASCAL 6000-3,4

The purpose of this chapter is to introduce those features that
are peculiar to the implementation on the Control Data 6000
computers. The reader is warned that reliance upon any of the
characteristics peculiar to PASCAL 6000-3.4 may render his
programs unacceptable to other implementations of Pascal. One
is, therefore, advised to use only features described as
Standard Pascal in the previous chapters whenever possible, and
certainly when writing "portable** programs.

The topics of this chapter fall into four categories;

A) Extensions to the language
B) Specifications left undefined in the preceding chapters

C) Restrictions
D) Additional predefined procedures, functions, and types

A, Extensions to the language Pascal

This section defines non-standard language constructs available
on the Pascal 6000-3.4 system. Although they may be oriented
toward the particular environment provided by the given
operating system, they are described and can be understood in

machine independent terms.

A.1 Segmented files

A file can be regarded as being subdivided into so-called
s Roments i .e . as a sequence of segments, each of which is
itself a sequence. PASCAL 6000-3.4 offers a facility to declare
a file as being segmented . and to recognize segments and their
boundaries . Each segment of such a file is a **lQ.gical in
CDC SCOPE terminology.

declaration:
<file type> seamentBil Ills. SiL <type>

an example:
T file aJL char ;

The predicate function

eos (x) returns the value true when the file x is
positioned at the end of a segment, otherwise

false .

The following two standard procedures are introduced:

89

putseg(x) must be called when the generation of a segment of
the file x has been completed, and

oetseg(x) is called in order to initiate the reading of the
next segment of the file x. It assigns to the
buffer variable the first component of that
next segment. If no next segment exists, eof(x)
becomes true; if a next segment exists but is
empty , then eos (x) becomes true and xf is
undefined. Subsequent calls of pet fx) will either
step on to the next component or, if it does not
exist, cause eos (x) to become true.

Get(x) must
■ggf (x) always

not be called if either eos (x) or eof(x) is true;
imp lies eos (x) .

The advantages of a segmented file lie in the possibility of
PPsitioning the reading or writing head (relatively) quickly to

file. For the purposes of reading and
e)writing a segmented file, the standard procedures getseg and

rewrite are extended to accept two arguments.

getseg(x,n) initiates the reading of the nth segment
counting from the iiurrent position of the file.
n>0 implies counting segments in the forward
direction; n<0 means counting them backwards;
and n=0 indicates the current segment. Note:
getseg(x , 1) is equivalent to getseg(x).

rewrite(x,n) initiates the (re)writing of x at the beginning
of the nth segment counting from the current
position. Note: rewrite(x,1) is nfit equivalent
to rewrite(x). The latter causes initiation of
(re)writing at the very beginning of the entire
file .

Since Tiles are organized for sequential (forward) processing
ne should not expect getseg and rewrite to be as efficient for

n<«0 as they are for n>0.

following two program schemes
statements W, R, and S, show the
writing and reading of a segmented file.

, with the parametric
operations of sequential

Writing a segmented file x:

rewrite(x);

££0eat {generate a segment}
{generate a component}

W(xt); put(x)
unlLll P :
putseg (x)

until q

90

Note; this schema will never generate an empty file nor an empty
segment .

Reading a segmented file x:

reset (x) :
while noi. eof(x) iIq.
begin {process a segment}

not. eos (x) iia
b^nin {process a component}

R (x t); get (x)

s.dA :
S ; getseg(x)

SJld

The next example shows a procedure that reads a segmented
textfile f and copies the first n lines of each segment onto the

file output •

procedure list;

V.ail i .s : integer ;
hRain s 0; reset(f);

while oglL eof (f) slU
begin s :=s+1; i ;= 0;

writeln(' segment',s);
while not eos (f) anil (i <n) jda
begin i := i+1; {copy a line}

while not eo1n (f) dn
begin writefft h get(f) {next character}

fiiul;
writeln; readln(f) {next line}

£.nA:
getseg(f) {next segment}

S.D.S1

The standard procedures read and writs, can also be applied to

segmented files.

A .2 External procedures

PASCAL 6000-3.4 provides a facility to access
nrnnedures i .e . procedures (functions) that exist outside the
user program and have been separately compiled. This enables the
Pascal programmer to access program libraries. The declaration
of such a procedure consists of a procedure heading followed by
the word '‘extern** or “Fortran”.

91

B, Specifications left undefined in the preceding chapters

B .1 The program heading and external files

A PASCAL file variable is implemented as a file in the CDC
operating system. Local files are allocated on disc store or in
the Extended Core Store (ECS). Storage is allocated when they
are generated and automatically released when the block to which
they are local is terminated.

Files that exist outside the program (i.e. before or after
program execution) may be made available to the program if they
are specified as actual aaramet ers in the program call statement
(EXECUTE) of the control card record. They are called external

and are substituted for the forma 1 parameters specified in
the EHogram Jiaadinn . The heading has the following form:

PHEiaiiani <identifier> (<program parameter>
{ . <program parameter>}) ;

where a program parameter is either:

<file identifier> -or- <file identifier> *

The pare amet ers are formal fil e ident
declared as fi le variables in the main
same way as actual local file var iables .

Files denot ed by the formal par ameters .
somewhat spe cial s- tatus . The foil owing ru

1, The pro gram ! leading rnu S-L contain

be

output ,

2. Contrary to all other external files, the two formal file
identifiers Input and nutaut must not be defined in a
declaration, because their declaration is automatically
assumed to be :

y.ail input, output: text;

3. The procedures reset and rewrite have no effect if applied
to the actual files INPUT and OUTPUT.

example :

P (output X . y);

var X ,y : text;

If an actual parameter in the EXECUTE statement of the control
card record is left empty, the corresponding formal parameter in

92

the program heading is then assumed as the actual logical file
name”. For example, when calling a program with the heading:

orQoram P(output,f,g);

then EXECUTE,(,X,) is equivalent to EXECUTE ,P(OUTPUT,X,G), The ;
full specification of the file parameters is recommended because i

reliance on default values often leads to mistakes that could

easily have been avoided.

B.2 Representation of files

In the case of external files it is important to know the
representation of files chosen by the PASCAL compiler. Every
component of a PASCAL-6000 file occupies an integral number of
60-bit words, with the exception of files with component type
rhar ftpxtfi Tpr). In this case PASCAL files use the ’’standard”
representation imposed by CDC*s text file conventions: 10
characters are packed into each word, implying that the I
procedures put and get include packing and unpacking operations |
when applied to textfiles. The end of a line is represented by |
at least 12 right-adjusted zero-bits in a word. Files
originating from card decks follow the same general textfile
conventions. Note that the operating system removes most (but
not necessary all) trailing blanks when reading cards. Hence,
such files do not necessarily consist of 80-character ’’card

images”.

Files that are not segmented are written as a single ’’logical
record” (in SCOPE terminology). While reading an unsegmented
external file, end-of-record marks are ignored [for an
exception, see point 3 below]. In segmented files, each segment
corresponds to a ’’logical record . There is no provision to

specify a ”record level”.

Use of external files

1, If an external file is to be read (written), then in the
case of non—segmented files, reading (writing) must be
initiated by the statement

reset(x) (rewrite(x))

and in the case of segmented files by

reset(x) (rewrite(x)) or
getseg(x,n) (rewrite(x,n))

(This statement is automatically implied for the files
denoted by the formal parameters input and and must
not be specified by the programmer.)

2. Every external file is automatically opened by a call of

93

the OPE routine of the operating system. If this opening is
to be restricted to the read function——e.g• in the case of a
permanent file without write permission—then this has to be
indicated by an asterisk following the file parameter in the
program heading. The asterisk itself constitutes no
protection against writing on the file.

example :
program testdata(output, data*);

ifian data: file of real;
r : real;

r := datat ; get(data)

If the actual file name INPUT is substituted corresponding
to a formal program parameter, say f, then f is the current
single logical record of the file INPUT .

B .3 The standard types

INTEGER

The standard identifier maxint is defined as

cansJL maxint = 281474976710655; { = 2**48 - 1 }

The reader is cautioned, however, that the CDC computer provides
no indication of overflow. It is, therefore, the programmer's
responsibility to provide a check whenever this might occur.

Actually, the machine is capable of storing integers up to an
absolute value of 2**59, but then only the operations of
addition (+), subtraction (-), taking the absolute value,
multiplication and division by powers of 2 (implemented as
shifts), and comparisons are correctly executed in this range
(as long as no overflow occurs). In particular, one cannot even
print an integer value i when abs (i) >maxint . This does, however,
allow the following test:

JL£ abs (i) > maxint then write(* too big')

real

The type llfia-L is defined according to CDC 6000 floating point
format. Provided is a mantissa with 48 bits, corresponding to 14
decimal digits. The maximum absolute magnitude is 10**322.

94

CHAR

A value of type char is an element in the character set provided
by the particular installation. The following 3 versions exist:

1) The CDC Scientific 64-character set
2) The CDC Scientific 63-character set
3) The CDC ASCII 64-character set

Table 13.q lists the available characters and indicates their
ordering: Note : the CDC specification implies an ordering of the
ASCII characters which differs from the International Standard
(ISO) !

95

CDC Scientific Character Set with 64 elements

0 1 2 3 4 5 6 7 0 9

0 : A B C D E F G H I

10 J K L M 1 N 0 P Q R 5

20 T U V w ; K Y Z 0 1 2

30 3 4 5 6 7 0 9 + - «

40 / {) $ = t , = [
50] % / r* V A t 1 < >

60 < 2 *

Comments:

- 0 not used in 63-character set version

- 51 i in the 63-character set version

- 40 t at ETH

- 53 I at ETH

- 57 ! at ETH

ASCII Character Set with CDC s ordering

0 1 2 3 4 5 6 7 0 9

0 : A B C D E F G H I

10 J K L M N 0 P Q R 5

20 T U V W X Y Z 0 1 2

30 3 4 5 6 7 0 9 + - *

40 / () $ = f • [

50 J % II 1 & 1 ? < >

60 @ \

Figure 13. a CDC character sets

96

Based upon the above character sets^ the following characters
are accepted by the Pascal 6000-3.4 compiler as synonyms for the
standard language symbols given in the left column:

Standard Pascal CDC scientific ASCII

not -»
and A L
or V

<>
<« <
>. 7

Figure 13.b: Alternative representation of
standard symbols

B.4 The standard procedure ’’write*'

If no minimum field length parameter is specified, the following
default values are assumed.

type default

10
22 (where the exponent is always

expressed in the form: E±999)

10
1

length of the string
10

The end of each line in a textfile f must be explicitly
indicated by writeln(f), where writeln(output) may be written
simply as writeln. If a textfile is to be sent to a printer, no
line may contain more than 136 characters. The first character
of each line is interpreted by the printer as a control
character and is not printed. The following characters are

interpreted to mean

V no line feed (overprinting)
blank single spacing
'0' double spacing
'1' skip to top of next page before printing

The procedure writeln(x) is used to mark the end of a line on
file X, The conventions of the CDC operating system regarding
textfile representation are such that this procedure is forced
to emit some extra blanks under certain circumstances. Hence,

int eger
real

Boolean
char
a string
alfa (see D,1)

97

upon reading, a textfile may contain blanks at the end of lines
that were never explicitly written. (Sorry about this!)

C, Restrictions

1. The word segment ed is reserved.

2. The base type of a set must be either
a) a scalar with at most 59 elements (or a subrange thereof)

or

b) a subrange with a minimum element greater than or equal
to zero, and a maximum element less than or equal to 58,
or

c) a subrange of the type char with the maximum element less
than or equal to the value chr(58).

3. Standard (built-in) procedures or functions are not accepted
as actual parameters. For example, in order to run program
11.6 in PASCAL 6000-3.4, one would have to write auxiliary
functions as follows:

fyjlctiQn sine(x: real): real;
begin sine :« sin(x) endi

f.g.npt jgn zer o (f u notion f: real; a,b: real): real;
begin ... endi

begin
read(x,y); writeln(x,y,zero(sine,x,y));

&nsL.

4. It is not possible to construct a file of files; however,
records and arrays with files as components are allowed.

5. Strings may be compared only if their length is less than 10
or a multiple of 10.

D. Additional predefined types, procedures, and functions

D.1 Additional predefined types

The type alfa is predefined by:

jy-ge alfa - packed array T 1 .. 10) char;

(Hence, a value of type alfa is representable in exactly one
word.) The constants of this type are strings of exactly 10
charact ers.

98

Applicable
comp aris on,
test order
v/alues may

on operands of type alfa are assignment
where = and <> test equality and <, <*,
accordihg to the underlying character

be printed by the procedure write.

(: =) and
>«, and >
s et, Alfa

I program 13.1
alfa values }

program egalfa(output) ;

var n1 ,n2; alfa;
begin write(' names; ');

n1 ;a 'raymond n2 debby
if n2 < n1 then writeln(n2,n1)

els e writeln(n1,n2)
end ■

names ; debby raymond

Note: It is not possible to read alfa values directly; instead, I
the following is suggested; j

var buf; array F 1 . , 1 0 1 char;
a; alfa; i; integer;

for i ;= 1 JtJa 10 lln read (bu f [i]) ;
pack(buf,1,a) {accomplishes read(a)}

D.2 Additional predefined procedures and functions

Procedures

date(a) assigns the current date to the alfa variable a. |

halt terminates the execution of the program and i
issues a post-mortem dump.

linelimit(f,x) f is a textfile and x is an integer expression.
The effect is to cause the program to be
terminated, if more than x lines are asked to be
written on file f,

message(x) the string x is written into the dayfile.
(Hence, x should contain at most 40 characters.)

time(a) assigns the current time to the alfa variable a.

puts eg gets eg and the extensions to rewrite and reset are

99

discussed in

Functions

card (x)

clock

expo(x)

undefined (x)

eos(x)

trunc(x ,n)

sect ion 13.A,1,

equals the cardinality of the set x (i.e. the
number of elements contained in the set x.)

a function, without parameters, yielding an
integer value equal to the central processor time,
expressed in milliseconds, already used by the
job ,

yields the integer valued exponent of the
floating-point representation of the real value x;
expo(x) = entier(log2(abs(x))),

a Boolean function. Its value is true when the
real value x is *'out of range*’ or *‘indef init e",
otherwise false [7]./

(discussed in section 13.A,1)

*s trunc(x*y), where n is an integer expression,
and y *= 2**n •

14
How t□ Use t he PASCAL 6000-3 .4 System

A. Control statements (for SCOPE 3.4)

A Pascal
compiler
which yie
code . In
compiler
precompile
provided
loaded co
appropriat
control
abbreviate
a single s
system , a
installati

job usually consi
is loaded, The
Ids a listing of
the third step
on secondary s

d routines for
on a "program libr
de is executed .
e orders to the
atements , The exac
d forms (loading a
tatement) depend e
nd must therefor
on ,

sts of four steps. First, the Pascal
second step is the compilation step,
the source program and the compiled
the compiled code, deposited by the

tore, is loaded and linked with
input and output handling, which are
ary" file. Finally, the compiled and

These four steps are initiated by
operating system in the form of

t form of these statements and their
nd execution can often be ordered by
ntirely upon the available operating
e be specified by the particular

The actual file parameters , which correspond to the formal file
identifiers listed in the program heading, must be specified in
the statement initiating execution of the compiled program
(usually an EXECUTE command).

The compiler itself is also a Pascal program. Its heading is

program Pascal(input,output,lgo);

The first formal parameter denotes the file representing the
source program to be compiled; the second, the program listing;
and the third, the compiled "binary", relocatable code.

The CDC operating systems allow the omission of actual
parameters in the control statements. If an actual file name is
omitted, the Pascal convention on program parameters specifies
that the formal file identifier be used as the actual file name.
Hence, the standard files INPUT, OUTPUT, and LGO are
automatically assumed as the default files for the source file,
the listing, and the relocatable binary code respectively. Note,
however, that these roles may be assumed by other files when
their names are entered as actual parameters. Note: actual
parameters must consist of at most 7 characters.

B . Compiler options

The compiler may be instructed to
certain options; in particular, it may
omit run-time test instructions. Compi
as comments and are designated as su
first character of the comment :

generate code acc
be requested to

ler directives ar
ch by a $-charact

ording to
insert or
e written
er as the

101

{$<option sequence> <any comment> }

Example: {$T +,P + }

The option sequence is a sequence of instructions separated by
commas. Each instruction consists of a letter, designating the
option, followed either by a plus (+) if the option is to be
activated or a minus (-) if the option is to be passivated, or
by a digit (see X and B below).

The following options are presently available:

T include run-time tests that check

a) all array indexing operations to insure that the index
lies within the specified array bounds .

b) all assignments to variables of subrange types to make
certain that the assigned value lies within the specified
range •

c) all divisions to insure against zero divisors
d) all automatic integer to real conversions to assure that

the converted value satisfies:
abs (i) <■ maxint

e) all case statements to insure that the case selector
corresponds to one of the specified case labels,

default * T +

P generate the code necessary to write a complete Post-Mortem
Dump (see section 14,C,2) in the case of a run-time error,

default « P +

X if a digit n (0 <» n <*» 6) follows the X, pass the first n
parameter descriptors in the registers XO to X(n-1) (the
first in XO, the second in XI, etc.). Otherwise pass them in
the locations with the addresses B6+3 to B6+n+2.

n>0 reduces the size of the code produced by the compiler and
probably also slightly improves the code. However, the
programmer must be aware that with n>0, the compiler cannot
use the registers XO to X min(n-1,i-2) for the passing of the
ith parameter. It is therefore possible that for n>0, the
compiler gives the message ’’running out of registers”; where
for n«0. it would not,

default » X4

E allows the programmer to control the symbols for the entry
Points to the object code modules (procedures and functions)
that he declares in his program. The following conventions
hold :

— Modules declared as ’’extern” or ”fortran” get an entry
point name equal to the procedure identifier cut to the
first seven characters .

102

— Local modules get an entry point name depending on the
value of the E-option (at the moment of analyzing the
module name) :

E- A unique symbol is generated by the compiler
E+ The first seven characters of the module name are

taken•

Whenever the cut module name is taken (E+ and **extern** or
f ortran) , it is the programmers responsibility to avoid the
occurrence of duplicate entry point symbols.

default « E-

L controls the listing of the program text,

default « L+

U allows the user to restrict the number of relevant characters j
in every source line to 72. The remainder of the line is |
treated as a comment. With U- the number of relevant i
characters is 120. The rest of the line is then treated as a :
comment.

default « U-

B used to specify a lower limit for the size of file buffers.
If after the B a digit d (1<sd<*9) occurs, the buffer size i

S, computed by the compiler, is guaranteed to be S > 128*d *
words .

default « B1

As the compiler instructions may be written anywhere in the
program, it is possible to activate the options selectively over
specific parts of the program.

C. Error messages

C.1 Compiler

The compiler indicates a detected error by an arrow, pointing to
the relevant place in the text, followed by a number, which
corresponds to the messages in Appendix E,

C.2 Run-time (Post-Mortem Dump)

When the compiler option P is turned on (i.e. P+), the compiler
generates code that can be used to print a readable **dump'* in
the case that a run-time error occurs. The dump includes the

103

following information:

a) the cause of the trap and where it occurred

b) a description of each of the procedures (functions) that
is activated at the time of the trap. These appear in the
reverse order of their calls and consist of:
1) the name of the procedure
2) the location of its call
3) a list of the names and values of the local variables

and parameters.

c) the values of the global variables in the main program.

Only variables and parameters of the types integer, real.
Boolean, and char are listed. Pointers are either *'nil’* or have an
octal value (address). For other scalar variables, the ordinal
number of their current value is printed. When, for any one
procedure, the option P is turned off (P-), then only the
procedure name and the location of its call appear in the dump.

In the case of recursive procedure calls, only the last (most
recent) three occurrences of each procedure are listed.

104

References

1. N. Wirth, The Programming Language PASCAL, Acta

* Informatica, 1, 35-63, 1971*

2. -, ‘‘Program Development by Stepwise Refinement ,
Comm. MM 221-227, April 1971.

3. -, Systematic Programming. Prentice-Hall, Inc.

1973.

4. O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare,
Structured Programming. Academic Press Inc.
1972.

5. C.A.R. Hoare and N. Wirth, “An Axiomatic Definition of the
Programming Language Pascal“, Ada
Informatica. 2, 335-355, 1973.

6. D.E. Knuth, THE ART OF COMPUTER PROGRAMMING, vol 1,
Fundamental Algorithms. Addison-?/esley , 1968.

7. SCOPE Reference Manual, CDC 6000 Version 3.4.1, Control Data
Corporation, 1973.

8. N. Vi/irth “The Design of a Pascal Compiler “, SOFTWARE
-Practice and Experience, J., 309-333 (1971)

105

Appendix A

Standard ProCuBdures and Functions

File handling procedures

put (f) appends the value of the buffer variable fT to the
file f, and is applicable only if prior to
execution, eof(f) is true, eof(f) remains true, and
fT becomes undefined.

get(f) advances the current file position to the next
component, and assigns the value of this component
to the buffer variable fT . If no next component
exists, then eof(f) becomes true, and the value of
fT is undefined. Applicable only if eof(f) is false
prior to its execution.

res et(f) resets the current file position to its beginning
for the purpose of reading, i.e, assigns to the
buffer variable fT the value of the first element of
f, eof(f) becomes false if f is not empty;
otherwise, fT is undefined and eof(f) remains true.

rewrit e(f) replaces the current value of f with the empty file,
eof(f) becomes true, and a new file may be written.

page(f) instructs the printer to skip to the top of a new
page before printing the next line of the textfile
f.

read, readln , write, writeln are discussed in chapter 12.

Dynamic allocation procedures

new(p) allocates a new variable v and assigns the
pointer reference of v to the pointer
variable p. If the type of v is a record
type with variants, the form

new(p ,t 1,.. ,,tn) can be used to allocate a variable of the
variant with tag field values t1.,,tn. The
tag field values must be listed
contiguously and in the order of their
declaration. They must not be changed
during execution.

dispo se(p) indicates that storage occupied by the
variable pT is no longer needed. The
tag field values must be identical to those
used when allocating the variable.

106

Data transfer procedures

pack(a,iTz) If a is an array variable of type
array Tm, .n] ia£ T

and z is a variable of type
packed ar.ra^[u . of. T

where n-m >* v-u, then this is equivalent to

for j :«utiivdiiz[j] :*a[j-u+i]

and
unpack(z,a,i) is equivalent to

for j :« u tsi v iio. a[j-u+i] :» z[j]

(In both cases, j denotes an auxiliary variable
not occuring elsewhere in the program.)

Arithmetic functions

abs (x) computes the absolute value of x. The type of the result
is the same as that of
or real.

sqr (x) comput es x*x. The typ e o
of X, which must be e it h

sin (x) for the following, t he
integer . The type of the

cos (x)
ar ct an(x)
exp(x)
In (x) (natural . logarithm)
sqrt (x) (square root)

X, which must be either integer

f the result is the same as that
er integer or real.

type of X must be either real or
result is always real.

Predicates (Boolean functions)

odd(x) the type of x must be integer; the result is true if x
is odd, otherwise false.

eoln(f) returns the value true when, while reading the textfile
f, the end of the current line is reached; otherwise,
fals e.

eof(f) returns the value true when, while reading the file f,
the **end-of-file** is reached; otherwise, false.

107

Transfer functions

trunc(x) X must be of type real; the result is the greatest
integer less than or equal to x for x>=0, and the
least integer greater or equal to x for x<0,

round(x) X must be of type real; the result, of type integer,
is the value x rounded.
That is, round(x) = tru nc (x+0.5) , for x ^ 0

trunc (x-0.5) , for x < 0

or d (x) the ordinal number of the argument x in the set of
values defined by the type of x.

chr (x) X must be of type integer, and the result is the
character whose ordinal number is x (if it exists).

Further standard functions

succ(x) X is of any scalar type (except real), and the result
is the successor value of x (if it exists).

pred(x) X is of any scalar type (except real), and the result
is the predecessor value of x (if it exists).

108

Appendix B
Summary af.

operator jLy.o S qL result

assignment any type except
file types

arithmetic:
+ (u nary) identity integer or real same as
- (unary) sign inversion operand

+ addition integer or real integer

*
subtraction
multiplication

or real

div integer division integer integer
/ real division integer or real real

masl modulus integer Integer

relational:
= equality scalar , string ,

<> inequality set , or pointer

<
>

less than
greater than

scalar or string

Boolean

<= less or equal
-or -
set inclusion

scalar or string

s et
> = greater or equal

-or -
set inclusion

scalar or string

set

in set membership first operand is
any scalar , the
second is its set
type

logical :

nni negation

nn
ojisL

dis junction
conjunction

Boolean Boolean

set :
+ union

set difference
intersection

any set type T T

109

Appendix C

IaiLl,es

A, Table of standard identifiers

Constants:
false, true, maxint

Types :
integer. Boolean, real, char, text

Program parameters;
input, output

Fu net ions ;
abs, arctan, chr, cos, eof, eoln, exp. In, odd,
nrd, pred, round, sin, sqr, sqrt, succ, trunc

Procedures:
get, new , pack, page. put, read , readli
rewrit e, unpack, write. writ eln

Table of word-delimit ers (reserved w or ds)

and end nil set

arx-AY fllR not then
begin for nf in
cas e funstlfln nn type

cnna,.t, got Q pacKsil wntll
div if pronediir-s var

xIq in proaram while
dnw nto label record with

els e mod repeat

C, Non-standard, predefined identifiers in PASCAL 6000-3.4

Types :
alfa

Fu notions:
card, clock, eos, expo, undefined

Procedures:
date, getseg, halt, linelimit, message, putseg, time

110

Appendix D
Syntax

Baiikus.j=N^ii Eniim (nN'F)

Note: the following symbols are meta-symbols belonging to the
BNF formalism, and not symbols of the language Pascal.

The curly brackets denote possible repetition of the enclosed
symbols zero or more times. In general,

A : iDf

is a short form for the purely recursive rule:

A ::« <empty> I AB

<program heading> ::= aronram <identifier> (<file identifiBr>
{. <file identifier> });

<file identifier> ::= <identifier>

<identifier> ::* <letter> {<letter or digit>}

<letter or digit> ::= <letter> I <digit>

<block> ::= <label declaration part> <constant definition part>
<type definition part> <variable declaration part>
<procedure and function declaration part>
<statement part>

<label declaration part> ::« <empty> |
label <label> { , <label>} ;

<label> ::= <unsigned integer>

<constant definition part> ::* <empty> |
const <constant definition> { ; <constant definition>} ;

<constant definition> : : =* <identifier> = <constant>

<constant> ::« <unsigned number> | <sign> <unsigned number> |
<constant identifier> | <sign> <constant identifier> |
<string>

<unsigned number> ::« <unsigned integer> | <unsigned real>

111

<unsigned integer> <digit> {<digit>}

<unsigned real> <unsigned integer> , <digit> {<digit>} |
<unsigned integer> . <digit> {<digit>} E <scale factor> |
<unsigned integer> E <scale factor>

<scale factor> <unsigned integer> | <sign> <unsigned integer>

<sign >::= + ! -

<constant identifier> <identifier>

<string> ' <character> {<character>}

<type definition part> <empty> |
type <type definition> { ; <type definition>} ;

<type definition> ::= <identifier> = <type>

<type> ::= <simple type> | <structured type> | <pointer type>

<simple type> <scalar type> ! <subrange type> |
<type identifier>

<scalar type> (<identifier> {. <identifier>})

oubrange type> ::= <constant> .. <constant>

<type identifier> <identifier>

<structured type> <unpacked structured type> I
packed <unpacked structured type>

<unpacked structured type> <array type> | <record type> |
<set type> I <file type>

<array type> ::= array [<index type> {. <index type>}]
<component type>

<index type> <simple type>

<CQmponent type> ::= <type>

<record type> ::= record <field list> end

<field list> <fixed part> | <fixed part> ; <variant part> I
<yariant part>

<fixed part> <record section> {; <record section>}

<record section> <fisld identifier> { , <field identifier>} :
<type> I <err,pty>

<variant part> case <tag field> <type identifier>
<variant> { ; <variant>}

112

<tag field> <fielcl iclentifier> : | <empty>

<variant> <case label list> : (<field list>) | <empty>

<case label list> <case label> <case label>)

<case label> <constant>

<set type> ::« set of <base type>

<base type> ::= <simple type>

<file type> ::«= file of <type>

<pointer type> t <type identifier> I

<variable declaration part> <empty> | |
i/iail <variable declaration> {; <variable declarat ion >) ; I

<variable declaration> <identifier> {. <identifier>} : <type>;

<procedure and function declaration part>
{<procedure or function declaration> ;}

<procedure or function declaration> <procedure declaration> |
<function declaration>

<procedure declaration> <procedure heading> <block>

<procedure heading> procedure <identifier> ; |
procedure <identifier> (<formal parameter section>
{ ; <formal parameter section>}) ;

<formal parameter section> <parameter group> |
V.ail <parameter group > | function <parameter group> |
procedure <identifier> { , <identifier>}

<parameter group> <identifier> {. <identifier>} :
<type identifier>

<function declaration> <function heading> <block>

<function heading> function <identifier> : <result type> ; |
function <identifier> (<formal parameter section>
{ ; <formal parameter section>}) : <result type> ;

<result type>

<statement part>

<type identifier>

:= <compound statement

!

>

<statement> <unlabelled statement> |
<label> : <unlabelled statement>

<unlabelled statement> : : «* <simple statement> |
<structured statement>

<simple statement> <assignment statement> |

113

<procedure statement> | <go to statement> |
<empty statement>

ossignment statement> <variable> := <expression> |
<functiQn identifier> := <expression>

<variable> <entire variable> | <component variable> I
<referenced variable>

<entire variable> <variable identifier>

<variable identifier> <identifier>

<component variable> ::= <indexed \/ariable> | <field designator> |
<file buffer>

<indexed variable> <array variable> [<expression>
{ . <expression>}]

<array variable> <variable>

<field designator> ::= <record variable> • <field identifier>

<record variable> <variable>

<field identifier> :<identifier>

<file buffer> <file variable> t

<file variable> ::= <variable>

<referenced variable> ::= <pointer variable> t

<pointer variable> <variable>

<expression> <simple expression> I oimple expression>
<relational operator> <simple expression>

<relational □peratQr> = I <> I < I <® I >- I > I in

<simple expressiGn> <term> I <sign> <term> |
<simple expression> <adding operator> <term>

<adding □perator> ::= + | - | nn

<term> <factor> | <term> <multiplying operator> <factor>

<mult ip lying □perator> : : = j / \ div I mod | and

<factor> <variable> I <unsigned constant> I (<expression>) |
<function designator> | <set> I not <factor>

<unsigned constant> <unsigned number> I <string> |
<constant identifier> | nil

<function designator> ::= <function identifier> I
<function identifier> (<actual parameter>

114

{. octual parameter>})

<fun ct io n id entifier> <ident ifier >

<set > : : = [<element list>]

<ele me nt lis t > ::* <element > { , <element > } I <empty>

<ele me nt > : : = <expression> | <ex press ion > .. <expression>

<pro ce du re s tatement> <proce dure ide ntifier> |
<procedure identifier> (<actual parameter>
{ , <actual parameter>})

<procedure identifier> <identifier>

octual parameter> <expression> | <variable> |
<procedure identifier> | <function identifier>

<go to statement> onto <label>

<empty statement> <empty>

<empty> : : =

<structured statement> <compQund statement> I
<conditional statement> | <repetitive statement> I
<with statement>

<conipound statement> begin <statement> { ; <statement>} qnd

<conditional statement> <if statement> | <case statement>

<if statement> <expression> then <statement> |
i£ <expression> then <statement> else <statement>

<case statement> Haas <expressiDn> Qf, <case list element>
{ ; <case list element>} end

<case list element> <case label list> : <statement> |
<empty>

<case label list> ::= <case label> {, <case label> }

<repetitive statement> : : =* <while statement> ! <repeat statement} I
<fQr statement>

<while statement> while <expression> jda <statement>

<repeat statement> reo eat <statement> {; <statement>}
u ntil <expression>

<for statement> for <control variable> := <for
<statement >

<for list> <initial value> i.a <final value> |
<initial value> downt□ <final value>

list >

115

<control variable> <identifier>

<initial value> <expression>

<final value> <expression>

<with statement> with <record variable list> iia <statement>

<record variable list> <record variable> { . <record variable>}

116

v
a
r
ia

b
le

id

e
n

ti
f
ie

r

117

118

119

Appendix E
Error Number Summary

1; error in simple type
2: identifier expected
3: 'program' expected
4: ') ' expected
5: ': ' expected
6: illegal symbol
7: error in parameter list
Qs 'of' expected
9: ' (' expected

10: error in type
11: ' [' expected
12: ' expected
13: 'end ' expected
14: *; * expected
15: integer expected
16: '=' expected
17: 'begin' expected
10: error in declaration part
19: error in field-list
20: ' , ' expect ed
21: '*' expected

50: error in constant
51: ' : = ' expected
52: 'then' expected
53: 'until' expected
54: 'do' expect ed
55: 'to '/'downto ' expected
56: 'if' expected
57; 'file' expected
58: error in factor
59: error in variable

101: identifier declared twice
102: low bound exceeds highbound
103: identifier is not of appropriate class
104: identifier not declared
105: sign not allowed
106: number expected
107: incompatible subrange types
108: file not allowed here
109: type must not be real
110: tagfield type must be scalar or subrange
111: incompatible with tagfield type
112: index type must not be real
113: index type must be scalar or subrange
114: base type must not be real
115: base type must be scalar or subrange
116: error in type of standard procedure parameter
117: unsatisfied forward reference

120

118: forward reference type identifier in variable declaration
119: forward declared; repetition of parameter list not allowed s
120: function result type must be scalar^ subrange or pointer
121: file value parameter not allowed |
122: forward declared function; repetition of result type not |

a 11 ow e d |
123: missing result type in function declaration
124: F-format for real only
125: error in type of standard function parameter |
126: number of parameters does not agree with declaration I
127: illegal parameter substitution
128: result type of parameter function does not agree with i

declaration ^
129: type conflict of operands j
130: expression is not of set type
131: tests on equality allowed only
132: strict inclusion not allowed
133: file comparison not allowed
134: illegal type of operand(s)
135: type of operand must be Boolean
136: set element type must be scalar nr subrange
137: set element types not compatible
138: type of variable is not array
139: index type is not compatible with declaration
140: type of variable is not record
141: type of variable must be file or pointer
142: illegal parameter substitution
143: illegal type of loop control variable
144: illegal type of expression
145: type conflict
146: assignment of files not allowed
147: label type incompatible with selecting expression
148: subrange bounds must be scalar
149: index type must not be integer
150: assignment to standard function is not allowed
151: assignment to formal function is not allowed
152: no such field in this record
153: type error in read
154: actual parameter must be a variable
155: control variable must not be declared on intermediate level
156: multidefined case label
157: too many cases in case statement
158: missing corresponding variant declaration
159: real or string tagfields not allowed ,
160: previous declaration was not forward
161: again forward declared i
162: parameter size must be constant j
163: missing variant in declaration
164: substitution of standard proc/func not allowed
165: multidefined label
166: multideclared label
167: undeclared label
168: undefined label
169: error in base set
170: value parameter expected
171: standard file was redeclared
172: undeclared external file

121

173: Fortran procedure or function expected
174: Pascal procedure or function expected
175: missing file **input ** in program heading
176: missing file ‘'output “ in program heading
177: assignment to function identifier not allowed here
17R: multidefined record variant
179: X-opt of actual proc/func does not match formal declaration

180: control variable must not be formal

181: constant part of address out of range

201: error in real constant: digit expected
202: string constant must not exceed source line
203: integer constant exceeds range
204: B or 9 in octal number
205: zero string not allowed
206: integer part of real constant exceeds range

250

251
252
253
254

255
256

257
258

259
260

t oo ma ny
too many
t 00 many
pro(cedur(
t oo many
too ma ny
t oo ma ny
t oo ma ny
too many
express i(
too man y

nested scopes of identifiers
nested procedures and/or functions
forward references of procedure entries
too long

long constants in this procedure
errors on this source line
external references
ext ernals
local files
n too complicated
exit labels

300: di vision by zero
301: no case provided for this value
302: index expression out of bounds
303: value to be assigned is out of bounds
304; element expression out of range

398: implementation restriction
399: variable dimension arrays not implemented

122

Appendix F

Prjaaramminn Examples

{procedures to read and write real numbers used by the
Standard Procedures read(f,x) and write(f,x:n) }

procedure rdr (y.ail fs text; var x: real);
{ read real numbers in 'free format' }
nnnat t48 = 281474976710656;

limit = 56294995342131;
z = 27; { ord('O') }
limi S5 322; { maximum exponent }
lim2 = -292; { minimum exponent }

type posint = 0,,323;
var ch : char; y: real; a ,i ,e : integer;

s ,ss : boolean; { signs }

function ten(e: posint): real;
y.ail i! integer; t; real;

1,

reoept if odd (e) iiion
££££ i Of

0 : t ■t t * 1 .Oel;
1 ; t rr t 1.0e2;
2: t a: t * 1 .Oe4;
3: t s t * 1 .0e8;
4: t s t * 1.0e16;
5: t s t * 1.0e32;
6: t SB t * 1.0e64;
7: t S t * 1.0e128
8: t B t * 1 .0e256

£0X1 ;
e : ’ = e diy 2; i :* i

until e =
ten := t

£11X1

10**e . 0<e<322 }

iiaflln
{skip leading blanks}

while ft*' ' get(f);

ch :* ft ;
if. ch = '-' then

begin s := true; get(f); ch :* ft
end else
begin s : * false;

if ch * '+' then
begin get(f); ch :* ft

£ml
£nxi ;

123

IL not. (ch in ['o ' . . *9 *]) t hen
begin message('♦♦digit expected'); halt;
nnxi;
a :« 0 ; e ; « 0;

eat i£ a < limit t.hen a :» 10♦a +ord(ch)-2

else e : = e + 1;
get (f); ch := ft

until nnt(ch in [);
i£ ch = ', ' then

tfijain { read fraction } get(f); ch :« ft;
while ch in [jln
bficrin i£ a < limit t hen

begin a :* 10^a + ord(ch)-z; e !« e-1
end ;

get(f); ch := ft

nnt :
if ch « 'e ' t hen

tfiflig { read scale factor } get(f); ch ft;
i ;= 0;
if. ch » then
begin ss :« true; get(f); ch :* ft
end else

tnain ss :*= false; if ch = ' + ' then
tnain get(f); ch := ft
nnt

nnt ;

if ch in I 'o'..'9'] then
bfiflin i :* ord(ch)-z; get(f); ch := f t ;

iiiliin ch in ['o'..'9'] dn
tnnin if i < limit then i :» lO^i -i- ord(ch)

get (f) ; ch :« ft
ant

end else

bfifliQ message(' digit expected'); halt
ant ;

if ss then e := e-i else e := e +i;
ant :
if e < lim2 then

begin a := 0; e := 0

ant alaa
if e > 1im 1 t hen
begin message('♦♦number too large'); halt end :
{ 0 < a < 2^*49 }
if a >s t 48 t hen y := ((a +1) diu 2) *2.0

else y :® a ;
if s tten y : = -y ;
if e < 0 t hen x ; = y /t en (-e) else
if e <> 0 then x : = y ♦t en (e) els e x : =* y ;

and;

124

nrnr.Rriur e wrp (war f: text; x: real; n: integer); I
{write real number x with n characters in decimal flt.pt, forma'
{the following constants are determined by the cdc flt.pt, formj
cnnst t48 = 281474976710656; {» 2**48} i

z = 27; { ord('0") }
type posint = 0,,323;
var c ,d,e,e0,e1 ,e2,i: integer;

funotion ten(e; posint): real;
var i: integer; treal;

begin i :* 0; t :** 1,0;
reoeat if. odd(e) then

CHS e i xif
0
1
2

3
4
5
6
7
8

end

1,0e1;
1,0e2;
1,0e4;
1,0e8;
1,0e16;
1,0e32;
1,0e64;
1,0e128;
1 .0e256

e e di\/ 2; i i + 1
until e * 0;
ten :* t

end { ten } ;

10**e, 0<e<322 }

begin { at least 10 characters needed: b+9,9e+999 }
if undefined(x) then
begin rspsat fT :* ' put(f); n n-1

Mnfil n <* 1;
fT := *u'; put(f)

end else
if X * 0 then
fagain repeat fT := ' put(f); n :« n-1

until n <« 1;
fT := "0": put(f)

end els e

benia
if n <* 10 then n := 3 els e n :« n-7;
repeat fT :* ' put(f); n :« n-1
until n <* 15 ;
{ 1 < n <= 15T number of digits to be printed }
begin { test sign, then obtain exponent }

if X < 0 then
begin fT :« put(f); X ;ss-x
end else begin fT := * * put(f) end:

e : = expo(x);
if e >a 0 then

begin e := e*77 div 256 +1; x :* x/ten(e);
if X >« 1,0 then

begin x := x/10,0; e := e+1
end

end else
begin e ;* (e + 1)*77 div 256; x ten(-e)*x;

if X <0,1 then

125

iiSfflin X 10,0*x;
end

and ;
{ 0,1 <« X < 1,0 }

CflSS n il£. { rounding }
2: X := x+0,5e-2;
3: X ;= x+0,5e-3;
4: X := x+0,5e-4;
5: X ;= x+0,5e-5;
6: X := x+0,5e-6;
7: X ;= x+0,5e-7;
8; X :s x+0,5e-8;

9: X :« x + 0..5e-9;
10: X : x + 0,5e-10 ;
11; X ;* x+0,5e-11 ;
12 ; X ; = x + 0,5e-12;
13; X ;= x+0,5e-13;
14: X ;* x+0,5e-14;
13; X ;- x+U.3e-13

end !

i£ X >=s 1,0 than

keflln X :=x*0,1;e ;=
BJid ;

c ;= tru nc(x,48);
c ;= 10*c; d ;= c div t48;

:« chr(d+z); put(f);
f T := \ : put(f);
LdJL i : * 2 in n jla
beain c ;= (c - d*t48) * 10;

fT : chr(d+z); put(f)
end ;

fT :« 'e'; put(f); e ;* e-
i£ e < 0 thnn

hsnin fT put(f);
and els e begin fT ;= '+';

el ;* e * 205 diu 2048; e2 :
e0 ;=: el * 205 div/ 2048; el
fT ;* chr(e0+z); put(f);
fT chr(e1+z); put(f);
fT ;= chr(e2+z); put(f)

end
end

end {wre} ;

e + 1 ;

d ; = c div/ t48;

•1 ;

e : = -e ;
put(f) end ;

* e - 10*e1;
:= el - 10*e0;

INDEX

When a reference in this index is not a section name (e .g•
Appendix A), then the reference may be of the following forms:

X 1 X 1 •x2 X 1 .x2.X 3

x1 is always the chapter number. x2 may be a capital letter in
Which case it may be followed by x3» a number» and refers to a |
chapter section. When x2 is a small letter? the reference is a |
figure; when x2 is a number? the reference is a program.

alfa (PASCAL 6000-3.4) 13.D.1
array types 6
assignment statement 4.A
binary tree 11 .A
block 0
BNF definitions Appendix D
Boolean 2.A
case statement 4.D .2
char 2.D
character sets 13.B .3
comment 1
compiler error messages 14.C.1? Appendix E
compiler options (PASCAL 6000-3.4) 13.B
compound statement 4 .B
conditional statements 4.D
constant declaration part 3.C
control statements (PASCAL 6000-3.4) 14.A

control variable 4.C .3
data types 2
declaration part 3
empty statement 4.B
equivalence 2.A
expression 4.A
field list 7
f i g u re s

after (list insertion) 10.c
alternative representation of ^standard symbols 13.b
ASCII character set (with CDC 's ordering) 13.a

before (list insertion) 10.b
binary tree structure 11.b
block structure 0.b
CDC scientific character set (with 64 elements) 13.a

expressions 11.a
identifier l.a
linked list 10.a
syntax diagram of program structure 0.a
two sample people 7.a
unsigned number l.b

file types 9
external files (PASCAL 6000-3.4) 13.B.1
representation in PASCAL 6000—3.4 13.B.2
segmented files (PASCAL 6000—3.4) 13.A.1

127

textfiles 9.A
for statement 4.C .3
forward reference 11 .C
func tion s 11 .B

declaration part 3.F
designator 11.B
heading 11 .B
predefined (PASCAL 6000-3.4) 13.D .2
standard, table of Appendix A

global variables 11.A
goto statement 4.E
identifiers, table of standard Appendix C
if statement 4.D.1
implication 2.A
input 9.B
integer 2.B
1/0 12
labels

case 7.A
declaration part 3.P
go to 3.B , 4.E

lists (linked) 10
local variables 11 .A
name precedence 11.A
notation 1
numbers 1
operator precedence 4.A
operators, summary of Appendix B
output 9.B
packed structures 6
parameters 11 .A
PASCAL 6000-3.4 13, 14
pointer types 10
procedures 11.A

declaration part 3.F
external procedures (PASCAL 6000-3.4) 13.A .2
heading 11 .A
predefined (PASCAL 6000-3.4) 13.D.2
procedure statement 11 .A
standard, table of Appendix A

program heading 3.A
(PASCAL 6000-3.4) 13.B .1

programs and program parts
beginend 4.1
bisect 11.6
complex 7.1
convert 3. 1
cosine 4.5
egalfa 13.1
egfor 4.4
eg re peat 4.3
egwhile 4.2
examples of goto 4.E
exponentiation 4.8
expon 2 11.8
forward reference 11 .C
frequency count 9.1

128

graph 1 4.9
graph 2 6.2
infla tion 0.1
insert 9.2
matrixmul 6.3
merge two files 9
minmax 6•1
minma x2 11.1
minmax3 11.2
pa rame te rs 11.3
pointers» construction via 10
postfix 11.4
primes 8.2
recursivegcd 11.9
roman 4.7
se to p 8.1
sideffect 11.7
sum file of real numbers 9
summing 4.6
tree traversa 1 11.5

read, the standard procedure 12.A
real 2.C
record types 7
relational operator 2.A , 4 .A
repeat statement 4.C .2
repetitive statements 4.C
reserved words—see word—delimiters
restrictions (PASCAL 6000-3. 4) 13.C
run-time error messages 14.C.2
scalar types 5.A
schema ta

read a text 9.A
read a text from "input” 9.A
read and write a segmented file 13.A.1
reading a segmented file 13.A.1
reading arbitrary number of numerical
items from a textfile 12.A

write a segmented file 13.A,1
write a text 9.A
write a text onto "output" 9.A
write a text x to y 9.A

SCO pe 0
se pa ra to r s 1
set operators 8
set types 8
side effect 11.B
standard identifiers Appendix C

string 1, 6
subrange types 5.B
syntax diagrams Appendix D
table s

block structure 0
default value for field width 13.B.4
operations on textfiles 9.A
printer control characters 9.B , 13.B.4
special symbols 1

truth values 2.A

I

129

type—-also see data types
declaration part 3.D
predefined (PASCAL 6000-3.4) 13.D.1
standard (PASCAL 6000-3.4) 13.B.3

variable declaration part 3.E
vocabulary 1
while statement 4.C.1
with statement 7.A
word-delimiters , table of Appendix C
write, the standard procedure 12,B

(PASCAL 6000-3.4 13.B.4)

Report

133

1. Introduction

The development of the
aims. The first is
teach programming as
fundamental concepts
language. The second
language which are
available computers.

language Pascal is based on two principal
to make available a language suitable to

a systematic discipline based on certain
clearly and naturally reflected by the
is to develop implementations of this

both reliable and efficient on presently

The desire for a new language for the purpose of teaching
programming is due to my dissatisfaction with the presently used
major languages whose features and constructs too often cannot
be explained logically and convincingly and which too often defy
systematic reasoning. Along with this dissatisfaction goes my
conviction that the language in which the student is taught to
express his ideas profoundly influences his habits of thought
and invention, and that the disorder governing these languages
directly imposes itself onto the programming style of the
students .

There is of course plenty of reason to be cautious with the
introduction of yet another programming language, and the
objection against teaching programming in a language which is
not widely used and accepted has undoubtedly some
justification, at least based on short term commercial
reasoning. However, the choice of a language for teaching based
on its widespread acceptance and availability, together with the
fact that the language most widely taught is thereafter going to
be the one most widely used, forms the safest recipe for
stagnation in a subject of such profound pedagogical influence,
I consider it therefore well worth-while to make an effort to
break this vicious circle.

Of course a new language should not be developed just for the
sake of novelty; existing languages should be used as a basis
for development wherever they meet the criteria mentioned and do
not impede a systematic structure. In that sense Algol 60 was
used as a basis for Pascal, since it meets the demands with
respect to teaching to a much higher degree than any other
standard language. Thus the principles of structuring, and in
fact the form of expressions, are copied from Algol 60. It was,
however not deemed appropriate to adopt Algol 60 as a subset of
Pascal; certain construction principles .particularly those of
declarations, would have been incompatible with those allowing a
natural and convenient representation of the additional features
of Pascal .

The main extensions relative to Algol 60 lie in the domain of
data structuring facilities, since their lack in Algol 60 was
considered as the prime cause for its relatively narrow range of
applicability. The introduction of record and file structures
should make it possible to solve commercial type problems with
Pascal, or at least to employ it successfully to demonstrate
Such problems in a programming course.

2, Summary of the language

An algorithm or computer program consists of two essential]
parts, a description of actions which are to be performed, and a
description of the data . which are manipulated by these actions.]
Actions are described by so-called statements . and data are
described by so-called declarations and definitions .

The data are represented by values of variables . Every variable
occurring in a statement must be introduced by a variable
declaration which associates an identifier and a data type with[
that variable. The data tvoe essentially defines the set ofj
values which may be assumed by that variable. A data type may inj
Pascal be either directly described in the variable declaration,
or it may be referenced by a type identifier, in which case this
identifier must be described by an explicit tvoe definition -

The basic data types are the scalar types . Their definition
Indicates an ordered set of values, i .e. introduces identifiers^
standing for each value in the set. Apart from the definable
scalar types, there exist four standard basic types ! Boolean
integer . char - and real , Except for the type Boolean, their!
values are not denoted by identifiers, but instead by numbers
and quotations respectively. These are syntactically distinctj
from identifiers. The set of values of type char is the
character set available on a particular installation.

A type may also be defined as a subrange of a scalar type byj
indicating the smallest and the largest value of the subrange. [

Structured types are defined by describing the types of their
components and by indicating a structuring method . The various
structuring methods differ in the selection mechanism serving to
select the components of a variable of the structured type. In
Pascal, there are four basic structuring methods available:
array structure, record structure, set structure, and file
structure.

In an array structure . all components are of the same type. A
component is selected by an array selector, or comoutahle index .
whose type is indicated in the array type definition and which
must be scalar. It is usually a programmer-defined scalar type,
or a subrange of the type integer. Given a value of the index
type, an array selector yields a value of the component type.
Every array variable can therefore be regarded as a mapping of
the index type onto the component type. The time needed for a
selection does not depend on the value of the selector (index).
The array structure is therefore called a random-acces s

In a record structure . the components (called fields) are not
necessarily of the same type. In order that the type of a
selected component be evident from the program text (without
executing the program), a record selector is not a computable
value, but instead is an identifier uniquely denoting the
component to be selected. These component identifiers are

135

declared in the record type definition. Again,
to access a selected component does not depend
and the record is therefore also a random-access

the time needed
on the selector,

s tructure .

A record type may be specified as consisting of several
ygriants . This implies that different variables, although said
to be f the same type, may assume structures which differ in a
certain manner. The difference may consist of a different number
and different types of components. The variant which is assumed
by the current value of a record variable may be indicated by a
component field which is common to all variants and is called
the iafl—flfild » Usually, the part common to all variants will
consist of several components, including the tag field.

A afil-airucture defines the set of values which is the powerset
of its base type, i.e. the set of all subsets of values of the
base type. The base type must be a scalar type, and will usually
be a programmer-defined scalar type or a subrange of the type
integer .

A file stcucture is a aeguence of components of the same type. A
natural ordering of the components is defined through the
sequence. At any instance, only one component is directly
accessible. The other components are made accessible by
progressing sequentially through the file. A file is generated
by sequentially appending components at its end. Consequently,
the file type definition does not determine the number of
components .

Variables declared in explicit declarations are called statin -
The declaration associates an identifier with the variable which
is used to refer to the variable. In contrast , variables may be
generated by an executable statement. Such a dynamic generation
yields a so-called pointer (a substitute for an explicit
identifier) which subsequently serves to refer to the variable.
This pointer may be assigned to other variables, namely
variables of type pointer. Every pointer variable may assume
values pointing to variables of the same type T only, and it is
said to be hound to this type T. It may, however, also assume
the value nil, which points to no variable. Because pointer
variables may also occur as components of structured variables ,
which are themselves dynamically generated, the use of pointers
permits the representation of finite graphs in full generality.

The most fundamental statement is the assignment statement. It
specifies that a newly computed value be assigned to a variable
(or components of a variable). The value is obtained by
evaluating an expression . Expressions consist of variables,
constants, sets, operators and functions operating on the
denoted quantities and producing new values • Variables ,
constants, and functions are either declared in the program or
are standard entities. Pascal defines a fixed set of operators,
each of which can be regarded as describing a mapping from the
operand types into the result type. The set of operators is
subdivided into groups of

1. arithmetic operators of addition. subtraction, sign

136

inversion. multiplication, division, and computing the
remainder ,

of negation, union (or), and conjunction

of union, intersection, and set difference.

of equality, inequality, ordering, set I
inclusion. The results of relational • membership and set

operations are of type Boolean .

T he
procedure (see be
the components or
which specify seq
their components
specified by the
execution by the
repeated execution
and the for
execution of a s
expression, and t
among many stateme
for statement is
beforehand . and t
otherwise •

causes the execution of the designated
low). Assignment and procedure statements are

uential, selective, or repeated execution of;
Sequential execution of statements is i

compound statement . conditional or selective
if 5.fa.fanig.nt and the , and

by the repeat statement . the while statement .
The if statement serves to make the

tatement dependent on the value of a Boolean
he case statement allows for the selection
nts according to the value of a selector. The
used when the number of iterations is knowi

he repeat and while statements are used

nt can be give n a name (identifier) . a nd be refer enced
t hat identifi er . T he statement is then call ed a

and its dec la rat ion a orocedurR dec laratjnn . S uch a
m ma y addi t i onally contain a s et of var ia ble
ns , type d efiniti ons and further proc edure

ns . T he varia bl es , typ es and procedur es thus dec lar ed

eferen ced only within the procedure itself, an d are
calle d local t o the pr ocedure . Their identifiers have

declaration
declarations ,
declarations .
can be
therefore
significance only wit
procedure declaration
identifiers . Since p

has

the pr ogram text which constitutes t he
id whi ch is called the SCOPe of these
idur es may be d eclared local to oth er
nes ted . Entities which are declared in
lOt loc al to some proced ure , are call ed

a fix ed number of para meters , each of
1 th e p rocedure b y an id entifier call ed
Ipon a n activat ion of the procedu re

the main program, i
oloba1 . A procedure
which is denoted w
the forma 1 p aramet e
statement , an actual quantity has to be indicated for each
parameter which can be referenced from within the procedure
through the formal parameter. This quantity is called the actual

There are four
variable parameters ,
In the first case,
which is evaluated

a local variable to
evaluation is assigned before the execution of the procedure (or
function). In the case of a variable parameter, the actual
parameter is a variable and the formal parameter stands for this
variable. Possible indices are evaluated before execution of the

(or function). In the case of procedure or function

parameters ,
parameters .
expression
represents

kinds of parameters: value
procedure and function

the actual parameter is an
once. The formal parameter
which the result of this

procedure

137

parameters, the actual parameter is a procedure or function
identifier .

are declared analogously to procedures . The only
difference lies in the fact that a function yields a result
which is confined to a scalar or pointer type and must be
specified in the function declaration* Functions may therefore
be used as constituents of expressions. In order to eliminate
side-effects, assignments to non-local variables should be
avoided within function declarations •

3, Notation, terminology, and vocabulary

According to traditional Backus—Naur form, syntactic constructs
are denoted by English words enclosed between the angular

I brackets < and > * These words also describe the nature or
j meaning of the construct. and are used in the accompanying
j description of semantics . Possible repetition of a construct is

indicated by enclosing the construct within metabrackets { and
}. The symbol <empty> denotes the null sequence of symbols.

The basic vocabulary of Pascal consists of basic symbols
classified into letters, digits, and special symbols.

<letter> A|B|C|D|E|F|GIH11|J|K|L|M|N|0|P|Q|R|S|T|U|V I
W|X|Y|2|a|b|c|dje|fig|h|i|j|k|l|m|njoipiq|rj
s It |u|v|w|x|y|z

<digit> ; :« 0| 1| 2\ 3| 4| 5| 6| 7| 8| 9
<special symbol>

+ I - I * I / I = I <> I < I > I <= I >- I (I) I
[I] I { I } I I . I . I : I ! I ' I t I Jliit I
mad I all I la I an I aad I aal I 1£ I then | else |
aaaa I a£ I repeat I until I while | I for | la I
dpwntp I begin | mml I with | goto | const | uar |

I ^zaa I array I record | set j file I function |
procedure | label | aacked | oroaram

The construct
{ <any sequence of symbols not containing **} ”> }

may be inserted between any two identifiers, numbers (cf. 4), or
special symbols . It is called a oomment and may be removed from
the program text without altering its meaning. The symbols { and
} do not occur otherwise in the language, and when appearing in
syntactic descriptions they are meta-symbols like | and .
The symbol pairrs (* and *) are used as synonyms for { and } .

4. Identifiers, Numbers, and Strings

Identifiers serve to denote constants, types, variables,
procedures and functions. Their association must be unique
within their scope of validity, i.e. within the procedure or
function in which they are declared (cf. 10 and 11).

138

<iclentifier> <letter>{ <letter or digit>}
<letter or digit> <letter> I <digit>

The usual decimal notation is used for numbers . which are the
constants of the data types integer and zl&qJl (see 6.1.2.) , The
letter E preceding the scale factor is pronounced as **times 10
to the power of**.

<digit sequence> <digit>{<digit>}
<unsigned integer> ::« <digit sequence>
<unsigned real> <unsigned integer>.<digit sequence> |

<unsigned integer>.<digit sequence>E<scale factor> |
<unsigned integer> E <scale factor>

<unsigned number> <unsigned integer> I <unsigned real>
<scale factor> <unsigned integer> |

<sign><unsigned integer>
<sign> ;:a + I -

Examples:
1 100 0.1 5E-3 87.35E+8

Sequences of characters enclosed by quote marks are called
strings . Strings consisting of a single character are the
constants of the standard type char (see 6.1.2). Strings
consisting of n (>1) enclosed characters are the constants of
the types (see 6.2.1)

packed array [1 . .n] char

Note: If the string is to contain a quote mark, then this quote
mark is to be written twice.

<string> *<character>{<character>}'

Examples:
••••

"PASCAL* * "THIS IS A STRING"

5. Constant definitions

A constant definition introduces an identifier as a synonym to a
constant .

<con3tant identifier> <identifier>
<constant> :<unsigned number> I <signxunsigned number> 1

<constant identifier> | <signxconstant identifier> |
<s t r i n g >

<constant definition> <identifier> * <constant>

139

6. Data type definitions

A data type determines the set of values which variables of that
type may assume and associates an identifier with the type.

<type> <simple type> | <structured type> | <pointer typo
<type definition> <identifier> * <type>

6.1, simple types

<simple type> <scalar type> | <subrange type> |
<type identifier>

<type identifier> <identifier>

6,1.1 .
A scalar type defines an ordered set of values by enumeration of
the identifiers which denote these values.

<scalar type> :(<identifier> {.<identifier>})

Examples :

(red. orange, yellow, green, blue)
(club, diamond, heart, spade)

(Monday. Tuesday. Wednesday. Thursday, Friday,
Saturday. Sunday)

Functions applying to all scalar types (except real) are :

succ the succeeding value (in the enumeration)
pred the preceding value (in the enumeration)

6.1.2, standard tvoes

The following types are standard in Pascal:

integer

real

Boolean

char

The values are a subset of the whole numbers
defined by individual implementations. Its values
are the integers (see 4).

Its values are a subset of the real numbers
depending on the particular implementation. The
values are denoted by real numbers (see 4).

Its values are the truth values denoted by the
identifiers true and false.

Its values are a set of characters determined by
particular implementations. They are denoted by
the characters themselves enclosed within quotes.

140

6.1,

A type may be defined as a subrange of
indication of the least and the largest
The first constant specifies the lower
greater than the upper bound.

another scalar type by
value in the subrange,
bound, and must not be

<subrange type> :<constant> .. <constant>

Examples: 1. , 100
-10 .. +10
Monday .. Friday

A structured type is characterised by the type(s) of its
components and by its structuring method. Moreover, a structured
type definition may contain an indication of the preferred data
representation. If a definition is prefixed with the symbol
nacked e this has in general no effect on the meaning of a
program (for a restriction see 9.1.2e); but it is a hint to the
compiler that storage should be economized even at the price of
some loss in efficiency of access, and even if this may expand
the code necessary for expressing access to components of the

structure •*'

<structured type> <unpacked structured type> I
DankRd <unpacked structured type>

<unpacked structured type> ::= <array type> |
<record type> I <set type> 1 <file type>

6.2.1. ^rraY.-tYB.£a

An array type is a structure consisting of a fixed number of
components which are all of the same type, called the ^QfDDQnsn^
type . The elements of the array are designated by indices,
values belonging to the so-called ttYQ£ • Ibe array type
definition specifies the component type as well as the index

I type. I

<array type> ts® array [<index type> { ,<index type>}]
<component type>

<index type> <simple type>
<component type> <type>

If n index types are specified, the array type is callec
n-dimensional . and a component is designated by n indices.

Examples; array [1..100] of real
array [1 . . 10,1 . .20] nf 0..99
array [Boolean] color

j

141

record type is a structure consisting of a fixed number of
components, possibly of different types. The record type
definition specifies for each component, called a field its
type and an identifier which denotes it. The scope of these
so-called fifild lilfintifiers is the record definition itself, and
they are also accessible within a field designator (cf. 7.2)
referring to a record variable of this type.

A record type may have several variants , in which case a certain
field may be designated as the JLafl fifild. whose value indicates
which variant is assumed by the record variable at a given time.
Each variant structure is identified by a case label which is a
constant of the type of the tag field.

<record type> record <field list> end

<field llst> <fixed part> | <fixed part>;<variant part> |
<variant part>

<fixed part> <record section> { ;<record section>}
<record section>

<field ldentifier>{ ,<field identifier>} : <type> | <empty>
<variant part> £aaa <tag field> <type identifier> ji£

<varlant> { ;<variant>}
<variant> <case label list> : (<field list>) | <empty>
<case label list> <case label> { ,<case label>}
<case label> ::« <constant>
<tag field> <identifier> : | <empty>

Examples: record davz 1..31;
month : 1 . .12;
year: integer

Il£Ci3rd name, firstname: alfa ;
age: 0..99;
married: Boolean

£Ild.

CfiCJind X ,y : real ;
area: real;

i^ase s : shape qZ
triangle: (side: real;

inclination, anglel, angle2; angle);
rectangle: (side1, side2 real;

skew, angle3: angle);
circle: (diameter: real)

snsL

6.2.3. B_et types

A set type defines the range of values which is the powerset of
its so-called liasfi txafi. . Base types must not be structured
types. Operators applicable to all set types are;

142

+ union
- set difference
* intersection

In membership

The set difference x-y is defined as the set of all elements of

X which are not members of y .

<set type> : set nil <base type>
<base type> <simple type>

6.2,
A file type definition specifies
sequence of components which are
number of components, called the
fixed by the file type definition,

called empty .

a structure consisting of a
all of the same type. The
Innoth of the file, is not

A file with 0 components is

<file type> filfi nf <type>
I

Files with component type char are called tBAt-tilnS.. and are a
'special case insofar as the component range of values must be
considered as extended by a marker denoting the end of a line.
This marker allows textfiles to be substructured into lines. The
type text is a standard type predeclared as

i;voe text = file a£ char

6.3.

Variables which are declared in a program (see 7.) are
accessible by their identifier. They exist during the entire
execution process of the procedure (scope) to which the variable
is local, and these variables are therefore called atatin (or
statically allocated^ In contrast, variables may also be
generated dynamically, i.e . without any correlation to the
structure of the program. These dynamic variables are generated
by the standard procedure (see 10.1.2.); since they do not
occur in an explicit variable declaration. they cannot be
referred to by a name. Instead, access is achieved via a
so-called oninter value which is provided upon generation of the
dynamic variable. A pointer type thus consists of an unbounded
set of values pointing to elements of the same type. No
operations are defined on pointers except the assignment and the

test for equality.

The pointer value nil belongs to every pointer type; it points

to no element at all.

<pointer type> t<type identifier>

143

Examples of type definitions:

color s (red, yellow, green, blue)
sex = (male, female)
t ext e file xi£ char
s hape ss (triangle, rectangle, circle)
card « array [1..80] xif char
alfa s Hacked array [1..10] jq£ char
complex * nacprd re,im: real £j2d
p erson s record name, firstname: alfa;

age: int eger ;
married :Boolean ;
father, child, sibling: fperson;

gase s : sex xi£
male: (enlisted, bold: Boolean);
female: (pregnant: Boolean;

size: array[1.»3] n£ integer)
ami

7. Declarations and denotations of variables

Variable declarations consist of a list of identifiers denoting
the new variables, followed by their type.

<variable declaration> ::« <identifier>{,<identifier>} : <type>

Every declaration of a file variable f with components of type T
implies the additional declaration of a so-called buffer
variable of type T . This buffer variable is denoted by ff and
serves to append components to the file during generation, and
to access the file during inspection (see 7.2.3. and 10.1.1.).

Examples:
X ,y ,2 : real
u,v: complex
i,j: integer
k: 0..9
P .q : Boolean
operator: (plus, minus, times)
a: arravT 0. .631 ja£ real
b: flUrazE color ,Boo lean] complex
c : color
f • £11 e ja£ char
hue1,hue2: aet of color
p 1 ,p 2: fperson

Denotations of variables either designate an entire variable a
component of a variable, or a variable referenced by a pointer
(see 6.3). Variables occurring in examples in subsequent
chapters are assumed to be declared as indicated above.

<variable> ::= <entire variable> | <component variable> I
<referenced variable>

144

7.1 ,

An entire variable is denoted by its identifier.

<entire variable> <variable identifier>
<variable identifier> <identifier>

7.2.

A component of a variable is denoted by the variable followed by
a selector specifying the component. The form of the selector
depends on the structuring type of the variable.

<component variable> <indexed variable> I
<field designator> I <file buffer>

7.2.1

A component of an n-dimensional array variable is denoted by the
variable followed by n index expressions .

<indexed variable>
<array variable> [<expression> {,<expression>}J

<array variable> !:= <variable>

The types of the index expressions must correspond with the
index types declared in the definition of the array type.

Examples :
a[12]

a[i+j]
b[red.true]

7.2.2.
A component of a record variable is denoted by the record
variable followed by the field identifier of the component.

<field designator> <record variable> .<field identifier>

<record variable> <variable>
<field identifier> <identifier>

Examples :
u .re
b [red .true] .im
p 2f ,3 ize

145

7.2.3. Ells, iiyffers

At any time, only the one component determined by the current
file position (read/write head) is directly accessible. This
component is called the current file component and is
represented by the file's buffer \/ariahle .

<file buffer> ;<file variable>t
<file v/ariable> <variable>

7.3. B.ef:£renced variables

<referenced variable> <pointer variable>t
<pointer variable> <variable>

If p is a pointer variable which is bound to a type T , p
denotes that variable and its pointer value, whereas pt denotes
the variable of type T referenced by p.

Examples :
p It .father
p1t .sibling! .child

8. Expressions

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operators and
operands, 1 .e . variables, constants, and functions.

The rules of composition specify operator precedences according
to four classes of operators. The operator not has the highest
precedence, followed by the so-called multiplying operators,
then the so-called adding operators, and finally, with the
lowest precedence, the relational operators. Sequences cf
operators of the same precedence are executed from left to
right. The rules of precedence are reflected by the following

146

<unsigned cQnstant> <unsigned number> I <string> |
<constant identifier> | nil

<factor> :i- <variable> | <unsigned constant> I
<function designator> | <set> I (<expression>) I
not <factor>

<set> [<element list>]
<element list> <element> { ,<element>} I <empty>
<element> <expression> | <expression> . . <expression>
<term> <factor> | <term><muIt iplying operator><factor>
<simple expression> <term> I

<simple expression> <adding operator><term> I
<sign >

<expression> <simple expression> |
<simple expressionxrelat ional operat or ><s imp le expression>

Expressions which are members of a set must all be of the same
type, which is the base type of the set, [] denotes the empty
set, and [x..y] denotes the set of all values in the interval
X . . .y .

Examples :

F actors: X
15
(X +y +z)
s in (x +y)
[red ,c ,green]
[1.5,10..19,23]

nai. p

Terms : X *y

i/(1-i)
p an q
(x <=y) anil (y <

Simple expressions: X -i-y
-X
hue 1 + hue2
i + 1

Expressions : X = 1.5

P <“q
(i<j) * (j<k)
c in hue 1

8.1.

If both operands of the arithmetic operators of addition,
subtraction and multiplication are of type integer (or a
subrange thereof), then the result is of type integer. If one of
the operands is of type real, then the result is also of type
real.

8.1.1

147

The operator noi. denotes negation of its Boolean operand,

<multiplying operator> | / | div | mod ! and

I operator I operation 1 type of operands 1 type of result|

I
I *

I
I multiplication I real , integer

1 1
1 real, integer |

I
I

I set intersection
I

1 any set type T 1 T 1

I /
I

1 division
1

I real . integer
1 1
1 real |
1 1

I ili^
1
1 division with 1 integer

I I
I integer |

I
I

1 truncation
1 1 1

I
I mod
I

1
1 modulus
1

1 integer
1 1
1 integer |

1 and
1

1 logical ”and*’
1

1 Boolean
I I
1 Boolean I

1 1

8.1.3. Aiijllng operators

<adding operator> : : =* + 1 - 1 nn

I operator I operation I type of operands 1 type of result|

I +
1
1 addition I integer, real

1
integer .real |

1 set union
1

1 any set type T T 1
1

j -
1
1 subtraction 1 integer , real

1
integer . real 1

1 set difference
1

1 any set type T T 1
1

I nn
I
1 logical “or"
1

1 Boolean
1

Boolean j

1

When used as operators with one operand only,
inversion, and + denotes the identity operation.

- denotes sign

8.1 .4.

<relational operator> = I <> In

148

I operator I type of operands result

= <>

< >

<= > =

any scalar or subrange type B oolean

In any scalar or subrange type
and its set type respectively

Boolean

Notice that all scalar types define ordered sets of values.

The operators <>, <=. >® stand for unequal, less or equal .and
greater or equal respectively.
The operators <= and >= may also be used for comparing values of
set type, and then denote set inclusion.
If p and q are Boolean expressions, p = q denotes their
equivalence. and p <= q denotes implication of q by p . (Note

that false < true)

The relational operators = <> <<«>>« may also be used to
compare (packed) arrays with components of type char (strings),
and then denote alphabetical ordering according to the collating
sequence of the underlying set of characters.

A function designator specifies the activation of a function. It
consists of the identifier designating the function and a list
of actual parameters . The parameters are variables . expressions.
procedures. and functions. and are substituted for the
corresponding formal parameters (cf. 9.1.2., 10. and 11).

<function designator> <function identifier> |
<function identifier>(<actual parameter>{ .<actual parameter>})

<function identifier> <identifier>

Examples: Sum(a.lOO)
GCD (147.k)
s in (x +y)
eof (f)
ord (ft)

9. Statements

Statements

referenced

denote
. They
by goto

algorithmic actions.
may be prefixed by
statements .

and are said to be
a label which can be

149

<s tat ement >!! =i<u nla bell ed statement> |
<labGl>;<unlabelled statement>

<unlabelled statement> <simple statement> |

<structured statement>
<label> <unsigned integer>

9.1. simple statements

A simple statement is a statement of which no part constitutes
another statement. The empty statement consists of no symbols
and denotes no action.

<simple statement> ::= <assignment statement> |
<procedure statement> | <goto statement> j
<empty statement>

<empty statement> <empty>

The assignment statement serves to replace the current value of
a variable by a new value specified as an expression .

<assignment statement> <variable> <expression> |
<function identifier> := <expression>

The variable (or the function) and the expression must be of
identical type. Vi^ith the following exceptions being permitted:

1. the type of the variable is real. and the type
expression is integer or a subrange thereof.

2. the type of the expression is a subrange of the type
variable, or vice-versa.

Examples: x :« y+z
p :* (1<ssi) and. (i < 10 0)
i :* sqr (k) - (i*j)

huel :« [blue .succ (c)]

9.1.2. Eracedure statements

A procedure statement serves to execute the procedure denoted by
the procedure identifier. The procedure statement may contain a
list of antuai narameters which are substituted in place of
their corresponding formal oarameters defined in the procedure
declaration (cf. 10). The correspondence is established by the
positions of the parameters in the lists of actual and formal
Parameters respectively. There exist four kinds of parameters:
so-called value parameters. variable parameters. procedure
parameters (the actual parameter is a procedure identifier), and
function parameters (the actual parameter is a function
identifier).

In the case of a yal^e parameter . the actual parameter must be
an expression (of which a variable is a simple case). The

of t he

of the

150

corresponding formal parameter represents a local variable of
the called procedure, and the current value of the expression is
initially assigned to this variable. In the case of a ^ar.iallla
Dnrameter . the actual parameter must be a variable, and the
corresponding formal parameter represents this actual variable
during the entire execution of the procedure. If this variable
is a component of an array, its index is evaluated when the
procedure is called, A variable parameter must be used whenever
the parameter represents a result of the procedure.

Components of a packed structure must not appear as actual
variable parameters .

<procedure statement> <procedure identifier> |
<procedure identifier> (<actual parameter>

{ ,<actual parameter>})
<procedure identifier> <identifier>
<actual parameter> <expression> | <variable> I

<procedure identifier> I <function identifier>

Examples: next
Transpose(a.n,m)
Bisect (fct,-1.0,4-1.0,x)

9.1.3.

A goto statement serves to indicate
should continue at another part of the
the place of the label.

that further processing
program text, namely at

<goto statement> goto <label>

The following restrictions hold concerning the applicability of
labels :

1 , The scope of a label
defined , it is therefor
procedure ,

2. Every label mus t be spec
heading of t he procedu
statement ,

the procedure within which it is
not possible to jump into a

ed in a label declaration in the
in which the label marks a

9.2.

Structured statements are constructs composed of other
statements which have to be executed either in sequence
(compound statement), conditionally (conditional statements), or
repeatedly (repetitive statements).

<structured statement> <compound statement> |
<conditional statement> 1 <repetitive statement> I
<with statement>

151

9.2.1. Compound statements

The compound statement specifies that its component statements
are to be executed in the same sequence as they are written. The
symbols begin and find, act as statement brackets •

<compound statement> begin <statement> { ;<statement>} end

Example; begin z := x ; x ;= y; y := z end

A conditional statement selects for execution a single one of
its component statements .

<conditional statement>
<if statement> 1 <case statement>

9.2.2.1.
The if statement specifies that a statement
a certain condition (Boolean expression)
false, then either no statement is to
statement following the symbol else is to be

be executed only if
is true . If it is

be executed, or the
executed .

<if statement> <expression> then <statement> |
jL£ <expression> then <statement> else <statement>

The expression between the symbols i£ and then must be of type
Boolean •

Note :
The syntactic ambiguity arising from the construct

i£ <express ion-1> then i£ <expression-2> then <statement-1>
else <statement-2>

is resolved by interpreting the construct as equivalent to

i£ <expression-1> t hen
begin i£ <expression-2> then <statement-1> else <statement-2>
find

Examples :
i£ x < 1.5 then z :» x +y else z : * 1.5
i£ P 1 <> nil then p 1 := p If .father

9.2.2.2,
The case statement consists of an expression (the selector) and
a list of statements, each being labelled by a constant of the
type of the selector. It specifies that the one statement be
executed whose label is equal to the current value of the

152

selector •

<case statement> case <expression> a£
<case list element> { :<case list element>} find.

<case list element> JS* <case label list> : <statement> I
<empty >

<case label list> <case label> { ,<case label> }

Examples :
case operator case i

plus : X : = X +y ; 1 ; X ; » sin (x)

minus : X : ® X -y ; 2: X := cos (x)

times : X x*y 3: X :» exp (x)

S.dA 4: X := In(x)
end

9.2.3. Ri

Repetitive statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is known
beforehand, i.e. before the repetitions are started, the for
statement is the appropriate construct to express this
situation; otherwise the while or repeat statement should be

used .

<repetitive statement> <while statement> I
<repeat statement> | <for statement>

9.2.3.1,

<while statement> : s = while <expression> dO. <statement>

The expression controlling repetition must be of type Boolean.
The statement is repeatedly executed until the expression
becomes false. If its value is false at the beginning, the
statement is not executed at all. The while statement

JttJlilfi B da S

is equivalent to

If B iJaaa
dsflin B;

while B jdfl. S

£ml

153

Examples :

while a[i] ox^IqI :*i+1

while i>0 do

-begin if! odd (i) then z z*x;
i := i 2;
X : « sqr (x)

^Jiilfi naL eof (f) sla
ia£flln P (ft); get (f)
&asl.

9.2.3.2, R£CLaa.t.,£i:a.tements

<repeat statement>
reo eat <statement> { ;<statement>} u ntil <expression>

The expression controlling repetition must be of type Boolean.
The sequence of statements between the symbols reo eat and until
is repeatedly executed (and at least once) until the expression
becomes true. The repeat statement

njBiiaaJL s until b

is equivalent to

begin S ;
if not B t hen

c.speat B until B
nnt

Examples :

r eo eat k : = i mod j

i := j ;
j := k

until 3 = 0

jisofiat P{ft): get(f)
until eof(f)

9.2.3.3

The for statement indicates that a statement is to be repeatedly
executed while a progression of values is assigned to a variable
which is called the control variable of the for statement.

154

<for statement>
for <control variable> := <for list> <statement>

<for list> <initial value> in <final value> |
<initial value> downto <final value>

<control variable> ::« <identifier>
<initial \/alue> <expression>
<final value> <expressiGn>

The control variable, the initial value, and the final value
must be of the same scalar type (or subrange thereof), and must
not be altered by the repeated statement. They cannot be of type
real .

A for statement of the form

for V : = e 1 ifl. e 2 xlfl. S

is equivalent to the sequence of statements

V :=e1; S;v :=succ(v); S: ... ;v :=e2; S

and a for statement of the form

for V : = e 1 downto e2 S

is equivalent to the statement

V := eV; S;v :=pred(S); S; ... ; v := e2; S

Examples :

Lor. i 2 in 63 dfl. i£ a[i] > max then max := a[i]

Lqxl i 5= 1 lil n du
fan j := 1 fa n jia
heoin x := 0 ;

for k : * 1 fa n fa x := x+A[i,kl-*‘0[k,j1;
C[i,jl := X

S.dA

for c := red fa blue fa Q (c)

<with statement> with <record variable list> fa <statement>
<record variable list> <record variable>{ ,<record variable>}

Within the component statement of the with statement, the
components (fields) of the record variable specified by the with
clause can be denoted by their field identifier only, i.e.
without preceding them with the denotation of the entire record
variable. The with clause effectively opens the scope
containing the field identifiers of the specified record
variable, so that the field identifiers may occur as variable
identifiers .

i

155

Example :

date da
LL month =* 12 then

begin month := 1; year year + 1

£ail
else month := month+1

is equivalent to

iX date.mdnth « 12 then
begin date .month 1; date .year ;* date.year + 1

else date .month ;= date.month + 1

No assignments may be made in the qualified statement to any
elements of the record variable list. However, assignments are
possible to the components of these variables.

10. Procedure declarations

Procedure declarations serve to define parts of programs and to
associate identifiers with them so that they can be activated by
procedure statements .

<procedure declaration> <procedure heading> <block>
<block> <label declaration part>

<constant definition partxtype definition part>
<variable declaration part>
<procedure and function declaration part>
<statement part>

The procedure heading specifies the identifier naming the
procedure and the formal parameter identifiers (if any).
The parameters are either value-, variable-, procedure-, or
function parameters (cf. also 9.1.2,), Procedures and functions
which are used as parameters to other procedures and functions
must have value parameters only .

<procedure heading> procedure <identifier> ; |
procedure <identifier> (<formal parameter section>

{;<formal parameter section>)) ;

<formal parameter section>
<parameter group> |
v^ar <parameter group>

<parameter group> I
<identifier> { ,<identifier>}

<parameter group> <identifier>{,<identifier>}:
<type identifier>

A parameter group without preceding specifier implies that its
constituents are value parameters .

The label declaration part specifies all labels which mark a

156

statement in the statement part•

<label declaration part> <empty> |
label <label> {,<label>} ;

The nonstant definition part contains all constant synonym
definitions local to the procedure.

<constant definition part> <empty> I
const <constant definition> { ;<constant definition>} ;

The type rief-i nl tinn part contains all type definitions which are
local to the procedure declaration,

<type definition part> :<empty> |
type <type definition> { ;<type definition> } ;

The yariable declaration part contains all variable declarations
local to the procedure declaration,

<variable declaration part> <empty> I
var <variable declaration> {;<variable declaration>} ;

The orocedurB and function declaration aani contains all
procedure and function declarations local to the procedure
declaration ,

<procedure and function declaration part>
{<procedure or function declaration> ;}

<procedure or function declaration>
<procedure declaration> | <function declaration>

The statement part specifies the algorithmic actions to be
executed upon an activation of the procedure by a procedure
statement ,

<statement part> :!= <compound statement>

All identifiers introduced in the formal parameter part, the
constant definition part, the type definition part, the
variable-, procedure or function declaration parts are local to
the procedure declaration which is called the of these
identifiers. They are not known outside their scope. In the case
of local variables, their values are undefined at the beginning
of the statement part ,

The use of the procedure identifier in a procedure statement
within its declaration implies recursive execution of the
procedure .

157

Examples of procedure declarations :

procedure readinteger fvar f: text: var x: integer) :
yar i , j : integer :
hfiflin while ft = ' * ilfl get(f); i :« 0;

wiillfi ft In ['O'..*9'] sia
kfiflin j !- ord(ft)- ord('O');

i :« 10*i + j;
get(f)

nmi:
X :» i

and

Bisect(function f; real; a,b:
\/ar m : real ;
begin {assume f (a) < 0 and f(b) > 0)

while abs(a-b) > lE-10*abs(a) do
begin m := (a+b)/2.0;

4f f (m) < 0 then a :« m else b

nnd:
z : = m

and

real;

: »m

iian 2 J real);

procedure GCD (m .n : integer; var x .y ,z : integer);
i^ax:a1.a2. b 1 .b2.c ,d .q .r : integer; {m>«0, n>0l
begin {Greatest Common Divisor x of m and n.

Extended Euclid's Algorithm}
a1 0; a2 :« 1; b1 !“1; b2 :« 0;
c ;« m ; d :« n ;
while d <> 0 do
begin {a1*m + b1*n « d, a2*m + b2*n « c,

gcd (c ,d) « gcd (m .n)}
q : = c d; r : ■ c mnd cl ;
a2 :» a2 -q*a1; b2 :■ b2 -q*b1;
c : * d ; d : * r ;
r :* a1; a1 :* a2; a2 :« r;
r :« b1; b1 :« b2; b2 :« r

nnd;
X :« c; y :«a2; z;« b2
{ X « gcd (m .n) » y *m + z *n }

and

10.1.
standard procedures are supposed to be predeclared in every
implementation of Pascal. Any implementation may feature
additional predeclared procedures. Since they are, as all
standard quantities , assumed as declared in a scope surrounding
the program, no conflict arises from a declaration redefining
the same identifier within the program. The standard procedures
are listed and explained below.

158

10.1.1. File handling_DrQceduraA

put (f)

get(f)

reset(f)

appends the value of the buffer variable ft to the
file f. The effect is defined only if prior to
execution the predicate eof(f) is true, eof(f)
remains true, and the value of ft becomes undefined.

advances the current file position (read/write head)
to the next component, and assigns the value of this
component to the buffer variable ft . If no next
component exists, then eof(f) becomes true, and the
value of ft is not defined. The effect of get(f) is
defined only if eof(f) ■ false prior to its
execution, (see 11.1.2)

resets the current file position to its beginning !
and assigns to the buffer variable ft the value of |
the first element of f. eof(f) becomes false, if f f
is not empty; otherwise ft is not defined, and j
eof(f) remains true. !

rewrite(f) discards the current value of f such that a new file
may be generated, eof(f) becomes true.

Concerning the procedures read, write, readln , writeln, and page
see chapter 12.

10.1.2. gynamic-allQcatiQn prQce.d.urs.s

new (p) allocates a new variable v and assigns the pointer
to V to the pointer variable p. If the type of v is
a record type with variants, the form

new (p ,t 1, . . . ,tn) can be used to allocate a variable of the
variant with tag field values t1,..,,tn. The tag
field values must be listed contiguously and in the
order of their declaration and must not be changed
during execution.

dispose (p) indicates that storage occupied by the variable pT
is no longer needed. If the second form of new was
used to allocate the variable then

dispose(p , t 1,. . . , tn) with iden tical tag field values must be
used to indicate that storage occupied by this
variant is no longer needed.

10.1.3.

Let the variables a and z be declared by

a: array [m..n] T
z: Dacked array [u..v] T

where n-m >« v-u . Then the statement pack(a,i,z) means

£xill j ;« u V dn z[j] :« a[j-u+i]

and the statement unpack (z ,a ,i) means

159

fflC j 5“ u Ifl V ^ a[j-u+i] :» z[j]

where j denotes an auxiliary variable not occurring elsewhere in
the program.

11. Function declarations

Function declarations serve to define parts of the program which
compute a scalar value or a pointer value. Functions are
activated by the evaluation of a function designator (cf. 8.2)
which is a constituent of an expression.

<function declaration> <function headingxblock>

The function heading specifies the identifier naming the
function, the formal parameters of the function, and the type of
the function .

<function heading> function <identifier>:<result type>; |
function <identifier> (<formal parameter section>
{ ;<formal parameter section>}) : <result type> ;

<result type> <type identifier>

The type of the function must be a scalar, subrange, or pointer
type. Within the function declaration there must be at least one
assignment statement assigning a value to the function
identifier . This assignment determines the result of the
function. Occurrence of the function identifier in a function
designator within its declaration implies recursive execution of
the function .

Examples :

Sqrt (x : real): real;
^an X 0.x 1: real;
begin x1 := x; {x>1. Newton^s method}

repeat xO :=x1; x1 :« (x0+x/x0)*0,
until abs(xl-xO) < eps*x1 ;
Sqrt := X 0

anil

X :

Max (a :
real; i:

vector ; n
integer ;

begin x : = a [1] ;
for i :* 2 ia n dfi
begin {x = max(a[1].

if X < a[i] then

integer): real;

..,a[i-.1])}
X : « a [i]

S.DJ1 :
{ X = max (a [1].a [n])}
Max := X

anil

160

tuaflin 1£
sjoA

GCD (m ,n; integer) : integer ;
n=0 then GCD :« m else GCD GCD (n ,m mod n)

Power (x : real ; y :
var w ,z : real; i: integer;
begin w :=x;2 :* 1; i :*

while i > 0
begin {2*(w**i) « x **

jL£ odd (i) then z ; *
i :» i div/ 2;
w : » sqr (w)

£nd.;
{ z * X **y }
Power := z

integer):

y;

y}
z *w ;

SJCLSi

real {y >» 0)

11.1.

Standard functions are supposed to be predeclared
implementation of Pascal . Any implementation may
additional predeclared functions (cf. also 10.1),

in every
feature

The standard functions are listed and explained below:

11.1.1

abs (x)

sqr (x)

computes the absolute value of x. The type of x
must be either real or integer . and the type of
the result is the type of x .

computes x**2. The type of x must be either real
or integer . and the type of the result is the type
of X .

sin (x)
cos (x)
exp (x)
In (x)
sqrt (x)
arctan(x)

the type of x must be either caal or integer . and
the type of the result is real .

11.1.2.
odd(x) the type of x must be integer . and the result is

true, if X is odd, and false otherwise.

I

i

eof(f) eof(f) indicates, whether the file f is in the
end-of-file status.

eoln(f) indicates the end of a line in a textfile (see
chapter 12) ,

k

I

161

11.1.3.

trunc (x)

round(x)

ord (x)

chr (x)

the real value x
part .

the real argument
integer .

is truncated to its integral

X is rounded to the nearest

X must be of a scalar type (including Boolean and
char), and the result (of type integer) is the
ordinal number of the value x in the set defined
by t he type of x.

X must be of type integer, and the result (of type
char) is the character whose ordinal number is x
(if it exists) .

11.1.4.

succ(x)

pred(x)

X is of any sea lar or subrange type , and t he
result is the succe ssor valu e of X (if it exists).

X is of any sea lar or subrange type , and t he
result is t he pr edecessor value of X (if it
exists).

12, Input and output

The basis of legible input and output are textfiles (cf.6.2,4)
that are passed as program parameters (cf. 13) to a PASCAL
program and in its environment represent some input or output
device such as a terminal, a card reader, or a line printer. In
order to facilitate the handling of textfiles, the four standard
procedures read . write . readln . and writ eln are introduced in
addition to the procedures oet and J3Jji • The textfiles these
standard procedures apply to must not necessarily represent
input/output devices, but can also be local files. The new
procedures are used with a non-standard syntax for their
parameter lists, allowing, among other things, for a variable
number of parameters. Moreover, the parameters must not
necessarily be of type char, but may also be of certain other
types , in which case the data transfer is accompanied by an
implicit data conversion operation. If the first parameter is a
file variable, then this is the file to be read or written.
Otherwise, the standard files input and output are automatically
assumed as default values in the cases cf reading and writing
respectively . These two files are predeclared as

var input , output : text

Textfiles represent a special case among file types insofar as
texts are substructured into lines by so-called line markers
(cf. 6,2,4.). If, upon reading a textfile f, the file position

162

is adv/anced to a line marker , that is past the last character of
a line. then the value of the buffer variable ft becomes a
blank, and the standard function eoln (fl (£nd Sif lijie) yields
the value true. Advancing the file position once more assigns to
ff the first character of the next line, and eoln(f) yields
false (unless the next line consists of 0 characters). Line
markers, not being elements of type char, can only be generated

by the procedure writeln ■

12.1. Ihs .flCflCLed^re xaad

The following rules hold for the procedure nead ; f denotes a
textfile and v1...vn denote variables of the types char, integer

(or subrange of integer), or real.

1. read(v1,...,vn) is equivalent to read(input ,v 1,... ,vn)

2. read (f ,v 1, . . . ,vn) is equivalent to read(f,v1); ... ;

read (f ,vn)

3. if V is a variable of type ghar . then read(f.v) is equivalent |

to V :» ft : get (f) |
)

4. if V is a variable of type integer (or subrange of integer) j
or real, then read(f,v) implies the reading from f of a j
sequence of characters which form a number according to the [
syntax of PASCAL (cf. 4.) and the assignment of that number j
to V . Preceding blanks and line markers are skipped.

The procedure read can also be used to read from a file f which
is not a textfile. read(f,x) is in this case equivalent to

X : = f T ; ge t (f).

1. readln(v1.vn) is equivalent to readln(input .v 1,... .vn)

2. readln(f,v1.vn) is equivalent to

read(f,v1.vn); readln(f)

3. readln(f) is equivalent to

while not eoln(f) ilfl get(f);
get (f)

Readln is used to read and subsequently skip to the beginning '

of the next line.

12.3. The procedure writs

The following rules hold for the procedure ; f denotes a
textfile, pi.pn denote so-called write-parameters , e denotes
an expression, m and n denote expressions of type integer.

1. write(p 1.pn) is equivalent to write(output ,p 1.pn)

163

2. write(f ,p 1. . , , ,pn) is equivalent to

write(f,p1); ... ; write(f.pn)

3. The write-parameters p have the following forms:

e :m e :m :n e

e represents the value to be **written** on the file f. and m
and n are so-called field width parameters. If the value e.
which is either a number, a character, a Boolean value, or a
string requires less than m characters for its
representation, then an adequate number of blanks is issued
such that exactly m characters are written. If m is omitteo.
an implementation-defined default value will be assumed. The
form with the width parameter n is applicable only if e is of
type real (see rule 6).

4. If e is of type char . then

write(f, e:m) is equivalent to
ft :« * put (f) ; (repeated m-1 times)
f t : ■ e ; put (f)

KqI.3. • the default value for m is in this case 1.

5. If e is of type Integer (or a subrange of integer), then the
decimal representation of the number e will be written on the
file f, preceded by an appropriate number of blanks as
specified by m.

6. If e is of type real , a decimal representation of the number
e is written on the file f. preceded by an appropriate number
of blanks as specified by m. If the parameter n is missing
(see rule 3). a floating-point representation consisting of a
coefficient and a scale factor will be chosen. Otherwise a
fixed-point representation with n digits after the decimal
point is obtained.

7- If e is of type Boolean , then the words TRUE or FALSE are
written on the file f. preceded by an appropriate number of
blanks as specified by m.

B. If e is an (packed) array of characters, then the string e is
written on the file f» preceded by an appropriate number of
blanks as specified by m.

The procedure write can also be used to write onto a file f
which is not a textfile. write(f»x) is in this case equivalent
to fT :« x; put(f).

1. writeln (p 1, . . .,pn) is equivalent to writeln(output,p1.... ,p n)

2. wr iteln (f ,p 1, . . . ,pn) is equivalent to write(f.p1.pn);
writeln(f)

3. writeln(f) appends a line marker (cf.6.2.4) to the file f.

164

12.3. Additional procedurea.

pa0e(f) causes skipping to the top of a new page, when the
textfile f is printed.

13. Programs

A Pascal program has the form of a procedure declaration except

for its heading.

<program> <program heading> <block> .

<program heading>
orooram <identifier> (<program parameters>) ;

<program parameters> <identifier> { , <identifier> }

The identifier following the symbol orooram is the program name;
it has no further significance inside the program. The program
parameters denote entities that exist outside the program, and
through which the program communicates with its environment .
These entities (usually files) are called . and must be
declared in the block which constitutes the program like

ordinary local variables .
The two standard files input and output must not be declared
(cf. 12), but have to be listed as parameters in the program
heading, if they are used. The initialising statements
reset(input) and rewrite(output) are automatically generated and
must not be specified by the programmer.

Examples:

program copy(f,g);
f.9 5 file oL real;

begin reset (f); rewrite (g);
while not eof (f) ilfl,

begin gt ;« ft ; put(g); get (f)
pnd

jBLnii •

program copytext(input,output);
ch : char ;

ksflln
while not eof (input) jda
begin

while not eoln (input) ila
begin read(ch) ; write(ch)
end ;

readln; writeln

s.asi
£J1£L .

165

A standard for implementation and program interchange

A primary motivation for the development of PASCAL was the need
for a powerful and flexible language that could be reasonably
efficiently implemented on most computers . Its features were to
be defined without reference to any particular machine in order
to facilitate the interchange of programs. The following set of
proposed restrictions is designed as a guideline for
implementors and for programmers who anticipate that their
programs be used on different computers . The purpose of these
standards is to increase the likelihood that different
implementations will be compatible, and that programs are
transferable from one installation to another.

1. Identifiers denoting distinct objects must differ over their
first 8 characters .

2. Labels consist of at most 4 digits.

3. The implementor may set a limit to the size of a base type
over which a set can be defined. (Consequently, a bit pattern
representation may reasonably be used for sets.)

character on each line of printfiles may be
as a printer control character with the following

: single spacing
: double spacing
! print on top of next page
: no line feed (overprinting)

Representations of PASCAL in terms of available character sets
should obey the following rules :

5. Word symbols - such as beoin , end. etc. - are written as a
sequence of letters (without surrounding escape characters).
They may not be used as identifiers.

6. Blanks , ends of lines , and comments are considered as
separators. An arbitrary number of separators may occur
between any two consecutive PASCAL symbols with the following
restriction: no separators must occur within identifiers,
numbers , and word symbols .

7. At least one separator must occur between any pair of
consecutive identifiers, numbers, or word symbols .

4. The first
interpreted
meanings :

blank
'0'

•r

166

15. Index

actual parameter
adding operator
array type
array variable
assignment statement
base type
block
case label
case label list
case list element
case statement
component type
component variable
compound statement
conditional statement
constant
constant definition
constant definition part
constant identifier
control variable
digit
digit sequence
element
element list
empty statement
entire variable
expression
factor
field designator
field identifier
field list
file buffer
file type
file variable
final value
fixed part
for list
for statement

formal parameter section
function declaration
function designator
function heading
function identifier
goto statement
identifier
if statement
index type
indexed variable
initial value
label
label declaration part
letter
letter or digit
multiplying operator

9.1.2
B.1 .3
6.2.1
7.2.1
9.1.1
6.2.3
10.
6.2.2
9.2.2.2 and 6.2.2
9.2.2.2
9.2.2.2
6.2.1
7.2
9.2.1
9.2.2
5.
5.
10.
5.
9.2.3.3
3.
4.
8.
8.
9.1
7.1
8.
8.
7.2.2
7.2.2
6.2.2
7.2.3
6.2.4
7.2.3
9.2.3.3
6.2.2
9.2.3.3
9.2.3.3
10.
11.
8.2
11 .
8.2
9.1.3
4.
9.2.2.1
6.2.1
7.2.1
9.2.3.3
9.
10.
3.
4.
8.1.2

167

parameter group 10.
pointer type 6.3
pointer variable 7.3
procedure and function

declaration part 10.
procedure declaration 10.
procedure heading 10.
procedure identifier 9.1.2
procedure or function declaration 10.
procedure statement 9.1.2
program 13.
program heading 13.
program parameters 13.
record section 6.2.2
record type 6.2.2
record variable 7.2.2
record variable list 9.2.4
referenced variable 7.3
relational operator 8.1.4
repeat statement 9.2.3.2
repetitive statement 9.2.3
resul t type 11.
scalar type 6.1.1
scale factor 4.
se t 8.
set type 6.2.3
sign 4.
simple expression 8.
simple statement 9. 1
simple type 6. 1
special symbol 3.
sta temen t 9.
statement part 10.
string 4.
structured statement 9.2
structured type 6.2
subrange type 6.1.3
tag field 6.2.2
term 8.
type 6.
type definition 6.
type definition part 10.
type identifier 6. 1
unlabelled statement 9.
unpacked structured type 6.2
unsigned constant 8.
unsigned integer 4.
unsigned number 4.
unsigned real 4.
variable 7.
\«riable declaration 7.
variable declaration part 10.
x^riable identifier 7. 1
va rian t 6. 2.2
variant part 6.2.2
while statement 9.2.3.1
with statement

•
9.2.4

0

r

I
1

MICROCOMPUTER
Problem Solving Using PASCAL

By K. L. Bowles

1977. X, 563p. paper

This text introduces problem solving and structured programmiijg using ^e PASCAL
language, extended with buiit-in functions for graphics^ Designed for a one-quarter/
semester curriculum at the sophomore/junior level, this book serVes a dual purposq;to
teach students an organized approach to solving problems, and to introduce them totrte
computer and its applications, which may be of use iater in their chosen professilns.

Severai features make this text suitable for both science and'^n-science majors:

• no mathematics is required beyond simple high school Algebra; algebraic examples
are Introduced near the middle of the book In order to reduce the mathematics
threat often felt by students

• algorithms are illustrated with hierarchic structure diagrams, tether than flow charts,
to emphasize the concepts of structured programs

• the GOTO statement is used only fleetingly near the end of the course In connection
with methods students might use to employ structured programming in other cqfnput-
er languages f

• science oriented students will find all of the programming methods taught in conven¬
tional courses in this text.

The Design of Well-Structured and Correct Programs

By S. Alagic and M. A. Arbib

1978. approx. 260p. approx. 68 illus. cloth
(Texts and Monographs In Computer Science)

Ten years of research are synthesized In this undergraduate text. Using the PASCAL
language, both the techniques of top-down program design and verification of program
correctness are presented. Many examples of program and proof development as well
as an explanation of control and data structures are provided. As a PASCAL program¬
ming text, it gives not only advanced algorithms, which operate on advanced data struc¬
tures, but also the full axiomatic definition of PASCAL.

^ Concurrent Pascal Compiler
; Minicomputers / >

By A C. Hartmann
* ' 1'^

197'e V, 119p. paper
(LeJiuie in Computer j< ence, V. 50)

■V.'W' i '
The author desc iLesl^' iseveJ'-pass compiler for the Concurrent Pascal programming
.'^'^,dage. Concur'■•ifitVascal is an abstract programming ianguage for computer operat-
ji^^ystems. The 'r'anguage extends sequential Pascal with the monitor concepts for
strumired concui 'ent progminming. Compiiation of Concurrent Pascal on a minicom¬
puter is dor 3 by dividirAktl-'. "nmpiler into seven sequentiai passes. The passes, written
in sequentir'.Paocai, *ferat6 virtuai codes that can be interpreted on any 16-bit mini¬
computer. ^ jJ* "j

Basic terms are defined the pass breakdown is described, each pass is described, the
virtuai machine is define,!, and the impiementation is discussed. Many of the compilation
techniques used here^arfe weil-known, but, taken as a whoie, this compiier is an engineer¬
ing oroduct that may serve as a prototype for industriai compiler writers. For this reason,
th‘'i‘ascription of the compiier is reiativeiy seif-contained.

COj),*nts:

Introduction. -Definitions. -Pass Structure. -Lexicai Analysis. -Syntax Anaiysis. -Name
Analy*^ . -Declaration Analysis. -Body Anaiysis. -Code Selection. -Code Assembly.
-Interpass Topics. -The Virtual Machine. -Implementation. -References. -Appendix: Syn¬
tax Graphs.

i

/

USER MANUALAND REPORT

Springer-Verlag publishes three series in Computer Science:

■ Texts and Monographs in Computer Science
■ Lecture Notes in Computer Science
■ Sammiung Informatik (intheHeidelbergerTaschenbucher).

Texts and Monographs in Computer Science begins with a thoroughly revised
edition of Gschwind/McCluskey, Design of Digital Computers to be followed
by a new printing of Randell, The Origins of Digital Computers. This series wiil
include texts at both the undergraduate and graduate levels as well as
monographs of interest to researchers in computer science.

Lecture Notes in Computer Science reports current developments in
computer science research and teaching—quickly, informally, and effectively.
This series is an appropriate vehicle for the publication of technical reports
that are otherwise not efficiently distributed. Reports on the state of the art of
specific areas, such as the summer schools on software engineering (Vol. 30)
or compiler construction (Vol. 21), have been particularly successful.

Sammiung Informatik is a collection of German textbooks designed to
cover the standard curriculum at German universities. Its content and frame¬
work are best represented by the two introductory volumes, Informatik I and
Informatik II by Bauer and Goos.

ISBN 0-387-90144-2 SPRINGER-VERLAG
ISBN 3-540-90144-2 SPRINGER-VERLAG

