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PREFACE 

A preliminary version of the programming language Pascal was 
drafted in 1968. It followed in its spirit the Algol-60 and 
Algol-W line of languages. After an extensive development phase, 
a first compiler became operational in 1970, and publication 
followed a year later (see References 1 and 8, p.104). The 
growing interest in the development of compilers for other 
computers called for a consolidation of Pascal, and two years of 
experience in the use of the language dictated a few revisions. 
This led in 1973 to the publication of a Revised Report and a 
definition of a language representation in terms of the ISO 
character set. 

This booklet consists of two parts: The User Manual, and the 
Revised Report. The Manual is directed to those who have 
previously acquired some familiarity with computer programming, 
and who wish to get acquainted with the language Pascal. Hence, 
the style of the Manual is that of a tutorial, and many examples 
are included to demonstrate the various features of Pascal. 
Summarising tables and syntax specifications are added as 
Appendices. The Reo nrt is included in this booklet to serve as a 
concise, ultimate reference for both programmers and 
implementors. It defines Standard Pascal which constitutes a 
common base between various implementations of the language. 

The linear structure of a book is by no means ideal for 
introducing a language. Nevertheless, in its use as a tutorial, 
we recommend to follow the given organization of the Manual, 
paying careful attention to the example programs, and then to 
reread those sections which cause difficulties. In particular, 
one may wish to reference chapter 12, if questions arise 
concerning input and output conventions. 

Chapters 0-12 of the Manual, and the entire Report, describe 
Standard Pascal. An implementor should regard the task of 
recognising Standard Pascal as the basic requirement of his 
system, whereas the programmer who intends his programs to be 
transportable from one computer to another should use only 
features described as Standard Pascal. Of course, individual 
implementations may provide additional facilities which, 
however, should be clearly labelled as extensions. 

Chapters 13 and 14 of the Manual document the implementation of 
Pascal on the Control Data 6000 computer. Chapter 13 describes 
the additional features of the language called Pascal 6000-3.4. 
Chapter 14 is devoted to the use of the compiler under the 

operating system SCOPE 3.4 . 

The efforts of many go into this manual, and we especially thank 
the members of the Institut fuer Infor'matik, ETH Zurich, and 
John Larmouth, Rudy Schild, Olivier Lecarme, and Pierre 
Desjardins for their criticism, suggestions, and encouragement. 
Our implementation of Pascal—which made this manual both 
possible and necessary—is the work of Urs Ammann, aided by 
Helmut Sandmayr, 

Kathleen Jensen 
Niklaus Wirth 
ETH Zurich 
Switzerland Nov. 1974 
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INTP.D.DiiCII.QN 

Much of the following text 
grasp of computer terminology 
of a program. The purpose 
intuit ion • 

assumes the reader 
and a "feeling** for 
of this section is 

has a minimal 
the structure 
to spark that 

{ program 0.1 
assuming annual inflation rates of 7, 8, and 10 per cent, 
find the factor by which the frank, dollar, pound 
sterling, mark, or guilder will have been devalued in 
1. 2 , ... n years .} 

program inflation(output); 

const n * 10; 
var i : integer; w1,w2,w3 

begin i : *= 0 ; w 1 ; * 

repeat i :« i+1; 
w 1 :ssw1 * 1.07 
w2 ;s w2 * 1.08 
w3 ;* w3 * 1.10 
writeln(i,w1,w2,w3) 

onLlI l»n 
and. 

; real; 
w2 := 1.0; w3 1.0; 

1 1.070000000000e+00 
2 1 . 144900000000e + 00 
3 1.225043000000e+00 
4 1.310796010000e+00 
5 1.402551730700e+00 
6 1 *500730351849e + 00 
7 1..60578l476478e+00 
8 1.718l86179832e + 00 
9 1.838459212420e+00 

10 1.967151357290e+00 

1.080000000000e + 00 
1.1664000000006+00 
1.2597120000006+00 
1.3604889600006+00 
1.4693280768006+00 
1.. 586874322944e + 00 
1.. 713824268779e + 00 
1.850930210282e+00 
1.999004627104e+00 
2.1589249972736+00 

1.1000000000006+00 
1.2100000000006+00 
1.3310000000006+00 
1,4641000000006+00 
1.6105100000006+00 
1.7715610000006+00 
1.9487171000006+00 
2.1435888100006+00 
2.3579476910006+00 
2.5937424601006+00 

An algorithm or computer program consists of two essential 
parts, a description of act ions which are to be performed, and a 
description of the data, which are manipulated by these actions. 
Actions are described by so-called statements , and data are 
described by so-called declarations and definitions, 

The program is divided into a heading* and a body, called a 
hlnnk - The heading gives the program a name and lists its 
parameters. (These are (file) variables and represent the 
arguments and results of the computation. See chapter 13.) The 
file "output" is a compulsory parameter. The block consists of 
six sections, where any except the last may be empty. In the 
required order they are; 
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<label declaration part> 
<constant definition part> 
<type definition part> 
<variable declaration part> 
<procedure and function declaration part> 
otatement part> 

The first section lists all labels defined in this block. The 
second section defines synonyms for constants; i .e. it 
introduces identifiers that may later be used in place of those 
constants. The third contains type definitions; and the fourth, 
variable definitions. The fifth section defines subordinate 
program parts (i.e. procedures and functions). The statement 
part specifies the actions to be taken. 

The above program outline is more precisely expressed in a 
syntax diagram . Starting at the diagram named program, a path 
through the diagram defines a syntactically correct program. 
Each box references a diagram by that name, which is then used 
to define its meaning. Terminal symbols (those actually written 
in a Pascal program) are in rounded enclosures. (See appendix D 
for the full syntax diagram of Pascal.) 
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program 

identifier -Ot •• identifier rOy^CDH [■ 
-o- 

block 

-(lade^- \ unsigned integer 
^ ♦ 

. 9 
-(CQNSI^- identifier 

<D- 
">^TYPE^ identifier -0^3’ 

-O- 
>^var)- identifier 

—CD- 1 
/Ou_ 

(PROCEDURE E)-^ 

block 
-©- 

identifier parameter list 

■>^UNCTIO^-» identifier - parameter list -o- type identifier 

►^BEGIN^ \_^ stcitcmcnt 

_ 

Figure O.a Syntax diagrams defining the 
general structure of a program 
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An alternative formulation of a syntax is the traditional 
£ja.Cki^S~Natir .Fiarm ? where syntactic constructs are denoted by 
English words enclosed between the angular brackets < and >, 
These words are suggestive of the nature or meaning of the 
construct. Enclosure of a sequence of constructs 
by the meta - brackets { and } implies their repetition 
zero or more times. (For the BNF of Pascal, see appendix D.) As 
an example, the construct <program> of figure 0.a is defined by 
the following formulas, called “productions''; 

<program> <program heading> <block> , 
<program heading> program <identifier> ( <file identifier> 

{, <file identifier>} ) ; 
<file identifier> <identifier> 

Each procedure (function) has a structure similar to a program; 
i.e, each consists of a heading and a block. Hence, procedures 
may be declared (nested) within other procedures. Labels, 
constant synonyms, type, variable, and procedure declarations 
are jl.Qcal to the procedure in which they are declared. That is, 
their identifiers have significance only within the program text 
which constitutes the procedure declaration and which is called 
the SmCOP s of these identifiers. Since procedures may be nested, 
so may scopes. Objects which are declared in the main program, 
i.6, not local to some procedure, are called global and have 
significance throughout the entire program. 

Since blocks may be nested within other blocks by procedure and 
function declarations, one is able to assign a level of nesting 
to each. If the outermost, program-defined block (e.g. the main 
program) is called level 0, then a block defined within this 
block would be of level 1; in general, a block defined in level 
i would be of level (i+1). Figure 0,b illustrates a block 
stru cture. 

level 0 

level 1 
level 2 
level 3 

M 

p, Q 
A, R, S 
B 
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In terms of this formulation the scope or range of validity of 
an identifier x is the entire block in which x is defined, 
including those blocks defined in the same block as x . (For this 
example, note that all identifiers must be distinct. Section 3 .e 
discusses the case where identifiers are not necessarily 
distinct •) 

objects defined in block are accessible in blocks 

M ,P ,A ,B ,Q ,R .S 
P .A ,B 
A.B 
B 

Q ,R .S 
R 
S 

M 
P 
A 
B 
Q 
R 
S 

For programmers acquainted with ALGOL, PL/I, or FORTRAN, it may 
prove helpful to glance at Pascal in terms of these other 
languages. For this purpose, we list the following 
characteristics of Pascal: 

1. Declaration of variables is mandatory. 
2. Certain key words (e.g, begin - end, reo eat ) are 

"reserved** and cannot be used as identifiers. In this 
manual they are underlined, 

3. The semicolon (;) is considered as a statement separator, 
not a statement terminator (as e.g, in PL/I), 

4. The standard data types are those of whole and real 
numbers, the logical values, and the (printable) 
characters. The basic data structuring facilities include 
the array, the record (corresponding to COBOL's and 
PL/I 's **structure *') , the set, and the (sequential) file. 
These structures can be combined and nested to form 
arrays of sets, files of records, etc. Data may be 
allocated dynamically and accessed via pointers. These 
pointers allow the full generality of list processing. 
There is a facility to declare new, basic data types with 
symbolic constants , 

5. The 3et data structure offers facilities similar to the 
PL/I “bit string**. 

6. Arrays may be of arbitrary dimension with arbitrary 
bounds: the array bounds are constant, (i.e. There are no 
dynamic arrays.) 

7. As in FORTRAN, ALGOL, and PL/I , there is a go to 
statement . Labels are unsigned integers and must be 
declared , 

6. The compound statement is that of ALGOL , and corresponds 
to the DO group in PL/I , 

9. The facilities of the ALGOL switch and the computed go to 
of FORTRAN are represented by the case statement. 

10, The for statement, corresponding to the DO loop of 
FORTRAN, may only have steps of 1 (ill) or -1 f downto ) and 
is executed only as long as the value of the control 
variable lies within the limits. Consequently, the 
controlled statement may not be executed at all. 
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11. There are no conditional expressions and no multiple 
assignments . 

12, Procedures and functions may be called recursively. 
13. There is no **own ** attribute for variables (as in ALGOL), 
14, Parameters are called either by value or by reference; 

there is no call by name. 
15. The “block structure*' differs from that of ALGOL and PL/I 

insofar as there are no anonymous blocks, i .e. each block 
is given a name, and thereby is made into a procedure. 

16, All objects—constants, variables, etc.—must be declared 
they are referenced. The following two exceptions 

are however allowed : 
1) the type identifier in a pointer type definition 
(chapter 10) 

2) procedure and function calls when there is a forward 
reference (chapter 11). 

Upon first contact with Pascal, many tend to bemoan the absence 
of certain “favorite features**. Examples include an 
exponentiation operator , concatenation of strings , dynamic 
arrays , arithmetic operations on Boolean values , automatic type 
conversions, and default declarations. These were not 
oversights, but deliberate omissions. In some cases their 
presence would be primarily an invitation to inefficient 
programming solutions; in others, it was felt that they would be 
contrary to the aim of clarity and reliability and “good 
programming style“. Finally, a rigorous selection among the 
immense variety of programming facilities available had to be 
made in order to keep the compiler relatively compact and 
efficient—efficient and economical for both the user who writes 
only small programs using few constructs of the language and the 
user who writes large programs and tends to make use of the full 
language . 
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NflIATIQN tm VOCABULARY 

The basic vocabulary consists of basic symbols classified into 
letters, digits, and special symbols. The special symbols are 
operators and delimiters: 

+ : ( aiul S,dA nil aoL 

- ) array LllS. nof fhan 
* = [ Lqxl nf t.a 
/ <> ] case function an fYQ£ 
ss < { 

} 
£pnst goto packed until 

• < = if procedure Y.aii 
. > = t sla in program 

> • • downto 
else 

lah£.l 

mojl 

record 
r eoeat 

WjBUdnjelimiters (or reserved words) are normally underlined in 
the hand-written program to emphasize their interpretation as 
single symbols with fixed meaning. The programmer may not use 
these words in a context other than that explicit in the 
definition of Pascal; in particular, these words may not be used 
as identifiers. They are written as a sequence of letters 
(without surrounding escape characters). 

The construct : 

{ <any sequence of symbols not containing **} ’*>} 

may be inserted between any two identifiers , numbers , or special 
symbols. It is called a comment and may be removed from the 
program text without altering its meaning. The symbols { and } 
do not occur otherwise in the language, and when appearing in 
syntactic descriptions, they denote meta-symbols like 1 and 
(On systems where the curly brackets are unavailable, the 
character pairs (* and *) are used in their place.) 

are names denoting constants, types, variables, 
procedures, and functions. They must begin with a letter, which 
niay be followed by any combination and number of letters and 
digits. Although an identifier may be very long, implementations 
may impose a limit as to how many of these characters are 
significant. Implementations of Standard Pascal will always 
recognise the first 8 characters of an identifier as 
significant. That is, identifiers denoting distinct objects 
should differ in their first 8 characters. 
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examples of legal identifiers ; 
sum root3 pi h4g x 
thisisaverylongbutneverthelesslegalidentifier 
thisisaverylongbutprobablythesameidentifierasabove 

illegal identifiers: 
3rd array level.4 root-3 

Certain identifiers, called standard identifiers . are predefined 
(e.g. sin, cos). In contrast to the word-delimiters (e.g. 
array ). one is not restricted to this definition and may elect 
to redefine any standard identifier, as they are assumed to be 
declared in a hypothetical block surrounding the entire program 
block . 

Decimal notation is used for numbers , The letter E preceding the 
scale factor is pronounced as **times 10 to the power of**. The 
syntax of unsigned numbers is summarized in figure 1 .b . 

Note that if the number contains a decimal point, at least one 
digit must precede and succeed the point. Also, no comma may 
occur in a number . 

unsigned numbers: 
3 03 6272844 0.6 5E-8 49.22E+08 1E 10 



11 

incorrectly written numbers: 
3,467.159 XII .6 E 10 5.E-16 

Blanks , ends of lines , and 
separators . An arbitrary number 
any two consecutive Pascal symbo 
no separators may occur within 
symbols . However . at least one 
pair of consecutive identifiers. 

comments are considered as 
of separators may occur between 

Is with the following exception: 
identifiers . numbers . or special 
separator must occur between any 

numbers . or word symbols • 

Sequences of characters enclosed by single quote marks are 
called strings . To include a quote mark in a string, one writes 
the quote mark twice. 

examples of strings: 
a ; 3 begin don t 

this string has 33 characters 
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Iii£ .C,Q,N.CEPT HE DATA 

Data is the general expression describing all that is operated 
on by the computer. At the hardware and machine code levels, all 
data are represented as sequences of binary digits (bits). 
Higher level languages allow one to use abstractions and to 
ignore the details of representation—largely by developing the 
concept of data tvoa - 

A data type defines the set of values a variable may assume. 
Every variable occurring in a program must be associated with 
one and only one type. Although data types in Pascal can be 
quite sophisticated, each must be ultimately built from 
unstructured types. An unstructured type is either defined by 
the programmer, and then called a declared scalar type, or one 
of the four standard scalar types—integer, real. Boolean, or 
char , 

A scalar type is characterized by the set of its distinct 
values, upon which a linear ordering is defined. The values are 
denoted by identifiers in the definition of the type (see 
chapter 5). 

A, The type Boolean 

A Boolean value is one of the logical truth values denoted by 
the predefined identifiers false and true. 

The following logical operators yield a Boolean value when 
applied to Boolean operands: (Appendix B summarizes all 
op er at ors ,) 

and logical conjunction 
Iin logical disjunction 
not logical negation 

Each of the relational operators («, <>, <-, <, >, >*, in) 
yields a Boolean value. Furthermore, the type Boolean is defined 
such that false < true. Hence, it is possible to define each of 
the 16 Boolean operations using the above logical and relational 
operators. For example, if p and q are Boolean values, one can 
express 

P <« q 

P * q 

P <> q 

implication 
equivalence 
exclusive OR 

as 
as 
as 
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Standard Boolean functions—i.e . standard functions which yield 
a Boolean result—are: (Appendix A summarizes all standard 
functions •) 

odd (x ) 
eoln(f ) 
eof(f ) 

true if the integer x is odd, false 
end of a line, explained in chapter 
end of file, explained in chapter 9 

otherwise 
9 

B . The type integer 

A value of type integer is an element of the 
implementation-defined subset of whole numbers. 

The following arithmetic operators yield an integer value when 
applied to integer operands : 

* multiply 
div divide and truncate (i.e. value is not rounded) 
mod a mod b = a - ((a div b)*b) 
+ add 

subtract 

The relational operators =, <>, <, <=, >«, > yield a Boolean 
result when applied to integer operands. <> denotes inequality. 

Four important standard functions yielding integer results are: 

abs (x ) 
sqr (x ) 
trunc (x ) 

round(x ) 

t he result is the absolute v a lu e of X . 

t he result is X squared. 
X is a r ea 1 value; the result is its who le p art . 
(Th e fra ct ional part is discar ded . H enc e 

tru nc(3.7)= 3 and trunc(-3.7) —3) 
X is a r ea 1 value; the res ult is the r ou nde d 
integer . r ou nd(x ) means for X >» 0 trunc (x+0 .5). a n d 

for x<0 tru nc (x-0.5) 

abs and sqr yield a n integer r es 
argumen t is als o of type integer. If i is 
integer , then 

succ (i ) yields t he **next ** integer, and 
pr ed (i) yields the I Dreceding integer 

This is , however , more clearly expressed by t 
i + 1 and i-1 

There exists an implementati on-dependent 
maxint . If a and b are integer expressions , t 

ult only when their 
a variable of type 

he expressions 

standard identifier 
he operation : 

a lie, b 

is guaranteed to be correctly implemented when 
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abs (a flCL b ) maxint , 
abs (a ) <« maxint , and 
abs (b ) <* maxint 

C . The type real 

A value of type real is an element of the 
implementation-defined subset of real numbers . 

As long as at least one of the operands is of type 
real (the other possibly being of type integer) the following 
operators yield a real value: 

* multiply 
/ divide (both operands may be integers , but 

the result is always real) 
+ add 
- subtract 

Standard functions when accepting a real argument yield a real 
result : 

abs (x ) absolute value 
sqr (x ) X squared 

Standard functions with real or integer argument and real 
result : 

sin (x ) 
cos (x ) 
arctan (x ) 
In (x ) 
exp (x ) 
sqrt (x ) 

trigonometric functions 

natural logarithm 
exponential function 
square root 

Warning: although real is included as a scalar type, it cannot 
always be used in the same context as the other scalar types • In 
particular, the functions pred and succ cannot take real 
arguments , and values of type real cannot be used when indexing 
arrays, nor in controlling for statements, nor for defining the 
base type of a set. 

D , The type char 

A value of type char is an element of a finite and ordered set 
of characters. Every computer system defines such a set for the 
purpose of communication. These characters are then available on 
the input and output equipment. Unfortunately, there does not 

4 



15 

exist one standard character set; therefore, the definition of 
the elements and their ordering is strictly implementation 
dependent . 

The following minimal assumptions hold for the type char, 
independent of the underlying impementation : 

The character set includes 
1. the alphabetically ordered set of capital Latin letters 

A .. .Z 
2. the numerically ordered and contiguous set of the decimal 

digits 0,..9 
3. the blank character. 

A character enclosed in apostrophes (single quotes) denotes a 
constant of this type, 

examples : 

(To represent an apostrophe, one writes it twice.) 

The two standard functions prinl and chr allow 
given character set onto a subset of natural 
ordinal numbers of the character set—and 
chr are called 

the mapping of 
numbers —called 
vice versa; ord 

the 
t he 
and 

ord(c) is the ordinal number of the character c in the 
underlying ordered character set. (also see section 
5.A) 

chr(i) is the character value with the ordinal number i. 

One sees immediately that ord and chr are inverse functions . 
i .e , 

chr(ord(c)) = c -and- ord(chr(i)) = i 

Furthermore, the ordering of a given character set is defined by 
c1 < c2 iff ord(c1) < ord(c2) 

This definition can be extended to each of the relational 
operators: *. <>. <. <«. >*. >. If R denotes one of these 
operators , then 

cl R c2 iff ord(c1) R ord(c2) 

When the argument of the standard functions pred and succ is of 
type char, the functions can be defined as: 

pred (c ) = chr(ord(c)-1) 
succ(c) = chr (or d (c )-»■ 1 ) 

Note: The predecessor (successor) of a character is dependent 
upon the underlying character set and is undefined if one does 

not exist , 



PARI 
3 

lUL PRQI3RAM HEAQINQ Afia THE 

Every program consists of a heading and a block. The block 
contains a declaration part, in which all objects local to the 
program are defined, and a statement part, which specifies the 
actions to be executed upon these objects. 

<program> <program heading> <block> 
<block> <label declaration part> 

<constant definition part> 
<type definition part> 
<variable declaration part> 
<procedure and function declaration part> 
<statement part> 

A. Program heading 

The heading gives the program a name (not otherwise significant 
inside the program) and lists its parameters, through which the 
program communicates with the environment (see chapter 13.B.1). 

<program heading> aronram <identifier> ( <file identifier> 
{, <file identifier> } ) ; 

B . Label declaration part 

Any statement in a program may be marked by prefixing the 
statement with a label followed by a colon (making possible a 
reference by a goto statement). However, the label must be 
defined in the label declaration part before its use. The symbol 
ladfil heads this part, which has the general form: 

label <label> {, <label>}; 

A label is defined to be an unsigned integer, and consists of at 
most 4 digits . 

example : 
3,1B; 

C . Constant definition part 

A iS.QJlS,lLflJliL definition introduces an identifier as a synonym for 
a constant . The symbol eonst introduces the constant definition 
part, which has the general form: 

Jinnsl. <identifier> » <constant>; { <identifier> = <constant>;| 
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where a constant is either a number, a constant identifier 
(possibly signed), nr a string. 

The use constant identifiers generally makes a program more 
readable and acts as a convenient documentation aid. It also 
allows the programmer to group machine or example dependent 
quantities at the beginning of the program where they can be 
easily noted and/or changed. (Thereby aiding the portability and 
modularity of the program.) 

As an example, consider the following program: 

{ program 3.1 
example of constant definition part } 

program convert(output); 

const addin * 32; mulby * 1.8; low = 0; high * 39; 
separator = *- 

var degree : low..high; 
begin 

writeln(separat or); 
for degree low tjo, high ila 
begin write(degree,'c*,round(degree*mulby + addin),'f'); 

if ndd(degree) then writeln 
end! 

writeln; 
writ eln(separat or) 

end, 

0c 32f 1c 34f 
2c 36f 3c 37f 
4c 39f 5c 41f 
6c 43f 7c 45f 
8c 46f 9c 48f 

10c 50f 11c 52f 
12c 54f 13c 55f 
14c 57f 15c 59f 
16c 61f 17c 63f 
18c 64f 19c 66f 
20c 68f 21c 70f 
22c 72f 23c 73f 
24c 75f 25c 77f 
26c 79f 27c 81f 
28c 82f 29c 84f 
30c 86f 31c 88f 
32c 90f 33c 91f 
34c 93f 35c 95f 
36 c 97f 37c 99f 
38c 100f 39c 102f 
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D . Type definition part 

A data type in Pascal may be either directly described in the 
variable declaration or referenced by a tvoe identifier . 
Provided are not only several standard type identifiers, but 
also a mechanism, the tvoe definition . for creating new types. 
The symbol type introduces a program part containing type 
definitions . The definition itself determines a set of values 
and associates an identifier with the set. The general form is: 

tiZPe <identifier> = <type>; { <identifier> = <type>;} 

Examples of type definitions are found in the subsequent 
chapters . 

E • Variable declaration part 

Every variable occurring in a statement must 
This declaration must t 

be declared in a 
extually precede 

any use of the variable. 

A variable declaration associates an identifier and a data type 
with a new variable by simply listing the identifier followed by 
its type. The symbol yar heads the variable declaration part. 
The general form is: 

var <identifier> {, <identifier>} 
{<identifier> {, <identifier>} 

<type>; 
<type >;} 

example : 
y.ai: root 1 ,root2,root3: real; 

count ,i : integer ; 
found : Boolean; 
filler : char; 

This identifier/type association is valid throughout the entire 
block containing the declaration, unless the identifier is 
redefined in a subordinate block. Suppose a block B is nested 
within block A. (i.e. declared within the scope of and hence 
subordinate to A , as in figure 0 .b ) It is possible to declare an 
identifier in B that is already declared in A . This has the 
effect of associating that identifier with a variable local to 
B—not available to A—which may be of any type. The latter 
definition is then valid throughout the scope of B, unless 
redeclared in a block subordinate to B . It is not allowed to 
declare a single identifier more than once within the same level 
and scope. Hence the following is always incorrect, 

a • integer; 
a : real: 
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F. Procedure and function declaration part 



4 
IJd£ CONCEPT JQ£ A.CIim 

Essential to a computer program is action. That is, a program 
must do something with its data—even if that action is the 
choice of doing nothing! Statements describe these actions. 
Statements are either simple (e.g. the assignment statement) or 

structured. 

A. The assignment statement 

The most fundamental of statements is the assignment statement . 
It specifies that a newly computed value be assigned to a 
variable. The form of an assignment is: 

<variable> :* <expression> 

where :* is the assignment oo erat or . not to be confused with the 
relational operator =. The statement "a :« 5” is pronounced **the 
current value of a is replaced with the value 5*', or simply, “a 
becomes 3". 

The new value is obtained by evaluating an express ion consisting 
of constant or variable operands, operators, and function 
designators. (A function designator specifies the activation of 
a function. Standard functions are listed in Appendix A; user 
defined functions are explained in chapter 11.) An expression is 
a rule for calculating a value where the conventional rules of 
left to right evaluation and oo erat or precedence are observed. 
The operator not (applied to a Boolean operand) has the highest 
precedence, followed by the multiplying operators (*, /, div . 
mod. and ). then the adding operators ( + , nC.)» and of lowest 
precedence, the relational operators («, <>, <, <*, >*, >, in). 
Any expression enclosed within parentheses is evaluated 
independent of preceding or succeeding operators. 

ex amples : 
2 * 3-4 * 5 
15 div 4*4 
80/5/3 
4/2 *3 
sqrt(sqr(3)+11*5) 

(2*3) - (4*5) 
(15 4)*4 
(80/5)/3 
(4/2)*3 

-14 
12 
5.333 
6.000 
6.000 

The syntax of Appendix D reflects the exact rules of precedence. 
The reader is recommended to reference it whenever in doubt. 

Boolean expressions have the property that their value may be 
known before the entire expression has been evaluated. Assume 
for example, that x=0. Then 

(x>0 ) and (x<10 ) 

is already known to be false after computation of the first 
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factor, and the second need not be evaluated* The rules of 
Pascal neither require nor forbid the evaluation of the second 
part in such cases. This means that the programmer must assure 
that the second factor is well-defined, independent of the value 
of the first factor. Hence, if one assumes that the array a has 
an index ranging from 1 to 10, then the following example is in 
error ! 

X : = 0; 
repeat x 

(Note that 
a[ 11] .) 

:* x+1 until (x>10) uc. (a[x]«0) 

if no a[i] * 0, the program will refer to an element 

Assignment is possible to variables of any type, except 
files. However, the variable (or the function) and the 
expression must be of identical type, with the exception that if 
the type of the variable is real, the type of the expression may 
be integer. (If a subrange type is involved, its associated 
scalar type determines the validity of the assignment; see 
section 5 ,B ,) 

examples of assignments: 
root 1 : = pi*x /y 
root 1 : = -root 1 
root3 :* (rootl + root2)*(1,0 + y) 
found : a y >2 

count := count 1 
degree := degree + 10 
sqrpr := sqr(pr) 
y :a sin (x ) + cos(y ) 

B , The compound statement 

cof^Pound statement specifies that its component statements 
be executed in the same sequence as they are written. The 
symbols begin and end act as statement brackets . Note that the 

body of a program has the form of a compound statement. 

{ program 4.1 

the compound statement } 

program beginend (output ); 

var sum ; integer; 
begin 

sum :a 3+5; 
writeln (sum,-sum) 

erul. 

8 -8 



22 

Pascal uses the semicolon to s eoarate statements, not to 
terminate statements; i .e . the semicolon is NOT part of the 
statement . The explicit rules regarding semicolons are reflected 
in the syntax of Appendix D . If one had written a semicolon 
after the second statement, then an emoty statement (implying no 
action) would have been assumed between the semicolon and the 
symbol end . This does no harm, for an empty statement is 
allowable at this point. Misplaced semicolons can, however, 
cause troubles—note the example in section 4 .D . 

C . Repetitive statements 

specify that certain statements be 
repeatedly executed. If the number of repetitions is known 
beforehand (before the repetitions are begun), the for statement 
is usually the appropriate construct to express the situation; 
otherwise, the repeat or while statement should be used. 

C .1 The while statement 

The while statement has the form: 

while <expression> iifl <statement> 

The expression controlling the repetition must be of type 
Boolean. It is evaluated before each iteration, so care must be 
taken to keep the expression as simple as possible. 

{ program 4.2 
compute h(n) = 1 1/2 + 1/3 + ... + 1/n } 

ornoram egwhile(input , output); 

var n : integer; h : real; 
haoin read (n ); write(n); 

h : = 0 ; 
yhile n>0 da 

begin h :s=h -i- 1/n; n :=n-1 

s.nA: 
writeln(h ) 

end . 

10 2.928968253968e+00 

executed 
the above 

. If its 

by the while statement (a compound 
case) is repeated until the expression 
value is false at the beginning, the 

The statement 
statement in 
becomes false 
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statement is not executed at all. 

C .2 The repeat statement 

The repeat statement has the form: 

USB.6a,t <statement> { ; <statement>} until <expression> 

The sequence of statements between the symbols repeat and until 
is executed at least once. Repeated execution is controlled by 
the Boolean expression, which is evaluated after every 
iteration . 

{ program 4.3 
Compute h(n) « 1 + 1/2 + 1/3 + . . . + 1/n } 

0.rflflram, egrepeat (input , output); 

^an n : integer; h : real; 
begin read(n); write(n); 

h : = 0; 

naaaaJL h:«h + 1/n; n:=*n-1 
until n=0; 
writeln(h ) 

end , 

10 2.928960253968e+OO 

The above program performs correctly for n>0. Consider what 
happens if n<»0. The while-version of the same program is 
correct for all n, including n=0. 

Note that it is a sequence of 
statement executes; a bracketing 
redundant (but not incorrect). 

statements that the repeat 
pair hecin ,. >qnd would be 

C .3 The for statement 

he for statement indicates that a statement be repeatedly 
executed while a progression of values is assigned to the 

■ggniXUl. vg.lli,a.ble of the for statement. It has the general form: 

fun <control variable> 

(or ) 

Lsm <control variable> 

<initial value> <final value> 
dfl <statement> 

<initial value> downt□ <final value> 
dfl, <statement> 
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{ program 4,4 

compute h(n) = 1 + 1/2 + 1/3 + ... + 1/n } 

program egfor (input, output): 

var i,n : integer; h : real: 
begin reacl(n); write(n): 

h :« 0 : 

£fl£ i 5 “ n (^iQwnt O 1 ilil h ; = h + 1 /i ; 
writeln(h) 

and. 

10 2.92896a253968e+00 

{ program 4.5 
compute the cosine using the expansion: 

cos(x) « 1 - x**2/(2*1) + x**4/(4*3*2*1) - ... } 

program cosine (input, output): 

const eps = 1e-14; 
var X ,sx ,s ,t :real: 

i .k ,n :integer : 
begin read (n ): 

for i : = 1 txi n do 
begin read(x): t := 1; k :« 0; s := 1; sx :« sqr(x); 

while abs(t) > eps*abs(s) xifl 
tienin k k + 2; t := -t *sx/(k»(k-1)) ; 

s : - s +t 
end ; 
wr iteln (x ,s ,k div 2) 

end 

and. 

1.534622222233e-01 9.882477647614e-01 5 
3.333333333333e-.01 9.449569463 147e-0 1 6 
5.000000000000e-01 8.775825618904e-01 7 
1.000000000000e+00 5.403023058681e-01 9 
3.141592653590e+00 -1.OOOOOOOOOOOOe+00 14 

The control variable, the initial value, and the final value 
must be of the same scalar type (excluding type real), and must 
not be altered by the for statement. The initial and final 
values are evaluated only once. If in the case of ta fdownto ) 
the initial value is greater (less) than the final value, the 
for statement is not executed. The final value of the control 
variable is left undefined upon normal exit from the for 
statement . 
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A for statement of the form: 

ffir V : = e 1 in e 2 ilfl S 

is equivalent to the sequence of statements: 

i£ e1<*e2 t hRn 

ilfiflln V :®e1; S; v :»succ(v); S; v :=e2; S 
end 

{at this point, v is undefined) 

and a for statement of the form: 

for V := e 1 downto e2 in S 

is equivalent to the statement : 

i£ e1> = e2 then 

V := e1; S; v := pred(v); S; v :» e2; S 
ami 
{at this point, v is undefined) 

As a final example consider the following program. 

{ program 4.6 

compute 1 - 1/2 + 1/3-...+1/9999 - 1/10000 , 4 ways. 
1) left to right, in succession 
2) left to right, all pos and neg terms, then subtract 
3) right to left in succession 
4) right to left, all pos and neg terms, then subtract) 

Program summing (output); 

van s 1 ,s 2p ,s 2n ,s 3,s 4p ,s 4n ,lrp ,lr n ,r Ip ,r In : real; 
i : integer ; 

bgaip si :=0;s2p :=0;s2n :=0;s3:=0;s4p :=0;s4n :=0 
for i := 1 in 5000 do 

bealg 
Irp := V(2*i-1); { pos terms, left to right ) 
Irn :* 1/(2*i); { neg terms, left to right) 
rip := 1/(10001-2*i); { pos terms, right to left) 
rln := 1/(10002-2*1); {neg terms, right to left } 
si ; SB si + Irp - Irn; 
s 2p : s= s 2p + Irp; s 2n :* s 2n + Irn; 
s3 := s3 + rip - rln; 
s 4p : = s 4p + rip ; s 4n := s4n + rln 

end ; 
write In (s 1 ,s 2p-s 2n ) ; 

wr iteln (s 3,s4p -s4n ) 

6.930971830595e-01 
6.93097l830599e-01 

6.930971830612e-01 
6.930971830601e-01 
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Why do the four **identical ** sums differ? 

D . Conditional statements 

A conditional statement _ an if or case statement, selects a 
single statement of its component statements for execution. The 

if. statement specifies that a statement be executed only if a 
certain condition (Boolean expression) is true. If it is false, 
then either no statement or the statement following the symbol 
g.lse is executed . 

D ,1 The if statement 

The two forms for an if statement are: 

if <expression> then <statement> 
(or ) 

if <expression> then <statement> else <statement> 

The expression between the symbols i£ and then must be of type 
Boolean. Note that the first form may be regarded as an 
abbreviation of the second when the alternative statement is the 
empty statement. Caution: there is never a semicolon before an 
else ! Hence, the text: 

if p t hen begin S 1; S2: S3 find.I else S4 

is incorrect. Perhaps even more deceptive is the text: 

if p then ; begin S 1; S 2; S3 end 

Here, the statement controlled by the if is the empty statement, 
between the t hen and the semicolon; hence, the compound 
statement following the if statement will always be executed. 

The syntactic ambiguity arising from the construct : 
if <expression-1> then if <expression-2> then <statement-1> 

else <statement-2> 

is resolved by interpreting the construct as equivalent to 
if <expression-1> then 

begin if <express ion-2> then <statement-1> 
else <statement-2> 

&asi 

The reader is further cautioned that a carelessly formulated if 
statement can be very costly. Take the example where one has 
n-mutually exclusive conditions, c1...cn, each instigating a 
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distinct action, si. Let P(ci) be the probability of ci being 
true, and say that P(ci)>=P(cj) for i<j. Then the most efficient 
sequence of if clauses is: 

jL£ c 1 then s 1 
IL c2 then s 2 

■SlSfi c (n -1 ) then s (n -1 ) else s n 

The fulfillment of a condition and the execution of its 
statement completes the if statement, thereby bypassing the 
remaining tests. 

If found is a variable of type Boolean, another frequent abuse 
of the if statement can be illustrated by: 

IL a«b jLiian found := true else found := false 

A much simpler statement is: 

found :« a=b 



{ program 4.7 

write roman numerals } 

program roman (output); 
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var X ,y : integer; 

kgaln y :* 1: 
rgasat. X :=y; write(x/ '); 

while x>=1000 ^ 

begin write('m'); X : = x-100 0 end : 
i£ x>«500 t hen 

begin write('d'); X :« X -5 0 0 SlUsI ; 
while x>=100 do 

begin writ e ('c *); X : = x-100 end : 
i£ x>*50 then j 

begin write('l'); X : = X-5 0 end; 

while x>=10 sin 
begin write('x'): X : = x-10 end : 

if x>=5 then 
begin write('v'): X : = X -5 s,nsL 1 

while x>=1 sla \ 
1 

begin write('i'); X : = x-1 ' 
writeln ; y := 2*y 

until y>5000 

s.nsL • 

1 i 
2 ii 
4 iiii 
6 viii 

16 xvi 
32 xxxii 
64 Ixiiii 

128 cxxviii 
256 cclvi 
512 dxii 

1024 mxxiiii 
2048 mmxxxxviii 
4096 mmmmlxxxxvi 

Notice again that it is only one statement that is controlled by 
an if clause. Therefore, when more than one action is intended, 
a compound statement is necessary. 

The next program raises a real value x to the power y, where y 
is a non—negative integer. A simpler, and evidently correct 
version is obtained by omitting the inner while statement: the 
result z is then obtained through y multiplications by x. Note 
the loop invariant: z*(u**0)=x**y. The inner while statement 
leaves z and u**e invariant, and obviously improves the 
efficiency of the algorithm. 
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{ program 4.8 

exponentiation with natural exponent } 

acflflr.am exponentiation (input , output); 

y.ax: e ,y : integer; u ,x .2 ; real; 
tlfiflin read(x,y); write (x.y); 

z :* 1; u :*x; e s=y; 
JfltJlilfi e>0 iin 
l:i£.aln {2 *u **e = x **y , e >0} 

jftLliilfi nai odci(e) iia 
e :* e 2; u :« sqr (u ) 

anil; 
e i®e — 1; z ;=u*2 

£Dii: 
writeln(z) {2 = x **y} 

£ml . 

2.OOOOOOOOOOOOe+00 7 1 .280000000000e+02 

The following program plots a real-valued function f(x) by 
letting the X-axis run vertically and then printing an asterisk 
in positions corresponding to the coordinates. The position of 
the asterisk is obtained by computing y=f(x), multiplying by a 
scale factor s, rounding the product to the next integer, and 
then adding a constant h and letting the asterisk be preceded by 
that many blank spaces. 
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{ program 4.9 
graphic representation of a function 
f(x) « exp(-x) * sin(2*pi*x) } 

orQoram graph1(output ) ; 
rnnst d * 0.0625; {1/16, 16 lines for interval [x,x+1]) 

s = 32; {32 character widths for interval [ytX+l]) 
h * 34; {character position of x-axis) 
c « 6.20318; {2*pi) lim « 32; 

var X ,y : real; i,n : integer; 
begin 

for i :« 0 ta lini shi 
hentn x :« d*i; y :« exp(-x)*sin(c*x); 
n :* round(s*y) h; 
repeat write(' '); n :» n-1 
until ne0; 
writeln('*') 

end 
end , 

* 

* 

* 

* 

* 

* 

* 

* 

* 
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D .2 The case statement 

The case statement consists of an expression (the selector) and 
a list of statements, each being labelled by a constant of the 
type of the selector. The selector type must be a scalar type, 
excluding the type real. The case statement selects for 
execution that statement whose label is equal to the current 
value of the selector; if no such label is listed, the effect is 
undefined. Upon completion of the selected statement, control 
goes to the end of the case statement. The form is: 

case <expression> xi£ 
<case label list> : <statement>; 

<case label list> : <statement> 
end 

examples: (assume var i: 

i qL 
0 ; X : » 0 ; 
1: X :« sin (x ) ; 
2: X :« cos (x ); 
3: X :« exp (x ); 
4: X :- ln(x) 

end 

integer; ch: char;) 
LLaafi ch ii£ 

a .b .c :ch := 
0,000 
d . e : ch :■ 
•f'/g': {null 

ami 

succ(ch); 
pred(ch); 
case} 

Notes: **Case labels** are noL ordinary labels (see section 4 .E ) 
and cannot be referenced by a goto statement . Their ordering is 
arbitrary; however. labels must be unique within a given case 
statement . 

Although the efficiency of the case statement depends on the 
implementation, the general rule is to use it when one has 
several mutually exclusive statements with similar probability 
of selection . 

E , The goto statement 

A stflt^Bfnent is a simple statement indicating that further 
processing should continue at another part of the program text 
namely at the place of the label. 

flfl.tP <label> 

Each label (an unsigned integer that is at most 4 digits) must 
appear in a label declaration prior to its occurrence in the 
program body. The scope of a label L declared in a block A is 
the entire text of block A. That is. anfi. statement in the 
statement aaxii of A may be prefixed with L:. Then any other 
statement within the whole of block A may reference L in a goto 
statement . 
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example (program fragment): 

label 1; {block A} 

^procedure B; {block 0} 
label 3; 

begin 

3: writeln ('error'); 

goto 3 

goto 1 

end ; {block B} 

begin {block A} 

• • • 

1: writeln(' test fails') 
{a ^gotQ 3** is not allowed in block A} 

end 

Warning: The effect of jumps from outside of a structured 
statement into that statement is not defined. Hence, the 
following examples are incorrect. (Note that compilers do not 
necessarily indicate an error.) 

Illena1 examples : 

a) fan is* ^ fa cio 
begin s 1; 
3: S2 

aail: 
goto 3 

b ) if p than sntn 3; 

if g then 3: S 

begin 
3: S 

&dA: 
iinnin • • • 

goto 3 

ami. 

A goto statement should 
situations where the natur 
broken . A good rule is 
regular iterations and co 
such jumps destroy t 
computation in the text 
Moreover , the lack of 
computational (static a 
detrimental to the clarit 

be reserved for unusual or uncommon 
al structure of an algorithm has to be 

to avoid the use of jumps to express 
nditional execution of statements, for 
he reflection of the structure of 
ual (static) structure of the program. 
correspondence between textual and 

nd dynamic) structure is extremely 
y of the program and makes the task of 
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verification much 
Pascal program is 
not yet learned 
construct in other 

more difficult. The 
often an indication 

**to think** in Pascal 
programming languages) 

presence 
that the 
(as this 

of goto's in a 
programmer has 
is a necessary 
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scalar and subrange types 

A . Scalar types 

The basic data types in Pascal are the scalar types . Their 
definition indicates an ordered set of values by enumerating the 
identifiers which denote the values. 

type <type identifier> = ( <identifier> { , <identifier>} ) ; 

example : 
type color = (white.red,blue.yellow ,purple .green , 

orange .black ) : 
sex = (male .female ); 
day = (mon .tues .wed .t hur .fri .sat .sun ); 
operators = (plus.minus ,times .divide ) ; 

illegal example : 
type workday = (mon .tues .wed .t hur .fri .sat ); 

free * (sat .sun ); 
(for the type of sat is ambiguous) 

The reader is already acquainted with the standard type Boolean 
defined as : 

type Boolean = (false, true); 

This automatically implies the standard identifiers false and 
true and specifies that false<true. 

The relational operators *. <>. <. <*. >=. and >. are applicable 
on all scalar types provided both comparands are of the same 
types. The order is determined by the sequence in which the 
constants are listed. 

Standard functions with arguments of scalar types are; 

succ(x) e .g . succ(blue) = yellow the successor of x 
pred(x) pred(blue) = red the predecessor of x 
ord (x ) ord(blue) = 2 the ordinal number of x 

The ordinal number of the first constant listed is 0, ord (x ) = 
ord (pred (x )) + 1. 

Assuming 
Boolea n. 
following 

t hat c and c1 
and s 1. . .s n 

are meaningful 

are of type color (above), b 
are arbitrary statements, 

statements : 

is of type 
then the 
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for c ;« black downt□ red jia s1 

while (cloc) and b dn s1 

jL£ owhite then c ;« pred(c) 

cas e c nf. 
red,blue,yellow: s1; 
purple: s2; 
green,orange: s3; 
white,black: s4 

end 

B. Subrange types 

A type may be defined as a subrange of any other already defined 
scalar type—called its associat ed scalar tvoe . The definition 
of a subrange simply indicates the least and the largest 
constant value in the sub range , whe re the lower bound must not be 
greater than the upper bound, A subrange of the type real is rmt. 
allowed• 

type <type identifier> « <constant> <constant> ; 

Semantically, a subrange type is an appropriate substitution for 
the associated scalar type in all definitions. Furthermore, it 
is the associated scalar type which determines the validity of 
all operations involving values of subrange types. For example, 
given the declaration; 

var a: 1,,10; b: 0,,30; c:20,,30; 

The associated scalar type for a, b, and c is integer. Hence the 
assignments 

a :* b; c :« b; b:* c; 

are all valid statements, although their execution may sometimes 
be infeasible. The phrase "or subrange thereof" is therefore 
assumed to be implied throughout this text and is not always 
mentioned (as it is in the Revised Report,) 

example: 
type days » (mon,tues,wed,thur,fri,sat ,sun ) ; {scalar type} 

workd * mon,,fri; (subrange of days} 
index « 0,,63; (subrange of integer} 
letter = 'a',,'z'; (subrange of char} 

Subrange types provide the means for a more explanatory 
statement of the problem. To the implementor they also suggest 
an opportunity to conserve memory space and to introduce 
validity checks upon assignment at run-time, (For an example 
with subrange types, see program 6,3,) 
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SiaULCXURLa I1PL2 IK IhLL hMLl LK 

Scalar and subrange types are unstructured types . The other 
types in Pascal are structured types . As structured statements 
were compositions of other statements, structured types are 
compositions of other types. It is the type(s) of the components 
and—most importantly—the structuring method that characterize 
a structured type. 

An option available to each of the structuring methods is an 
indication of the preferred internal data representation. A type 
definition prefixed with the symbol packed signals the compiler 
to economize storage requirements, even at the expense of 
additional execution time and a possible expansion of the code, 
due to the necessary packing and unpacking operations. It is the 
user's responsibility to realize if he wants this trade of 
efficiency for space. (The actual effects upon efficiency and 
savings in storage space are implementation dependent, and may, 
in fact , be nil .) 

The array type 

An array type consists of a fixed number of components (defined 
when the array is introduced) where all are of the same type, 
called the component or type . Each component can be 
explicitly denoted and directly accessed by the name of the 
array variable followed by the so-called index in square 
brackets. Indices are computable; their type is called the index 
type . Furthermore, the time required to select (access) a 
component does not depend upon the value of the selector 
(index); hence the array is termed a random-access structure . 

The definition of an array specifies both the component type and 
the index type. The general form is: 

A = array[T1] af T2; 

where A is a new type identifier; T1 is the index type and is a 
scalar or subrange type (where types integer and real are 
not allowable index types); and T2 is any type. 

examples of variable declarations -and- sample assignments 

memory : arrant 0..max] a£ integer memory[i+j] :» x 
sick : arxiay.[ days] a£ Boolean sick[mon] := true 

(Of course these examples assume the 
identifiers .) 

definition of the auxiliary 
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{ program part 6.1 

find the largest and smallest number in a given list } 

program minmax (input. output); 

Cflns.t n = 20; 
VAr i ,u .V .min .max : integer; 

a : array f 1..n1 integer; 

{assume that at this point in the program, array a 
contains the values: 35 68 94 7 88 -5 -3 12 35 9 
-630-2 74 88 52 43 5 4} 

min :* a[ 1] ; max 

Ehlls i < n do 
jaaflln u :« aTi] ; 

if u >v then 
ilAAin if u >max 

i£ v<min 
6nd else 
begin if v >max 

if u<min 
end ; 
i := i+2 

:« min; i :« 2; 

V : = a[i+1] f 

fiiAn max :« u 
th£n min : ■ V 

fJifin max : ■ V 

fiiAn min : = u 

end ; 
if i=n iJiBii 

if a[n]>max then max a[n] 
else if a[n]<min then min a[nj ; 

writeln (max .min) 

Anil • 

94 -6 
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{ program 6.2 
extend program 4.9 to print x-axis } 

program graph2(output) ; 
rnnst d = 0.0625: 16 lines for interval [x,x + 1]} 

s * 32; {32 character widths for interval [yTy + '']l 
h1 * 34; {character position of x-axis} 
h2 « 68; {line width} 
c = 6.28318; {2*pi} lim = 32; 

var itJAin; integer; x,y: real; 
a : array F1,.h2l nL char; ^ ^ 

haain for j := 1 in h2 iLq. a[j] * • 
for i 0 in lim iia 
haain x ; =* d*i ; y := exp (-x )*sin (c*x ) ; ^ ^ 

a[h1] := n ;= round (s*y) +h1; a[n] :* * ; 
if. n < hi then k hi else k := n; 
for j 1 t n k do writ e (a[ j 1 ) ; 

writeln; a[n] :« 
end 

end. 

* 

* 

* 

* 
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(Consider how one would extend program 6.2 to print more than 

one function—both with and without the use of an array.) 

Since T2 may be of any type, the components of arrays may be 
structured. In particular. if T2 is again an array, then the 
original array A is said to be multidimensional . Hence, the 

declaration of a multidimensional array M can be so formulated; 

VAC M : acca^[a..b] siL accav[c..d] at T; 
and 

M[i][j] 

then denotes the jth component (of type T) of the ith component 
of M . 

For multidimensional arrays, it is customary to make the 
convenient abbreviations: 

vax M : array f a . .b .c . >d1 T; 
and 

We may regard M as a matrix and say that is the jth 
component (in the jth column) of the ith component of M (of the 
ith row of M ), 

This is not limited to two dimensions , for T can again be a 
structured type. In general, the (abbreviated) form is: 

type <type identifier> = 
array f <index type> { , <index type>}] ji£ <component type> ; 

If n index types are specified, the array is said to be 
n-dimensional . and a component is denoted by n index 
expressions . 
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{ program 6,3 
matrix multiplication ) 

program matrixmu1(input, output): 

const m=4: p=3: n=2: 
var i : 1..m; j : 1..n; k : 1..p; 

s : int eger : 
a : ai:iiaz[ 1 • .m , 1 . .p ] q.L integer; 
b : array f 1, .p . 1 , .n 1 integer; 
c : array \ 1 . ,m . 1 , ,n1 n£ integer; 

begin {assign initial values to a and b} 
for i : = 1 JLfl m ila 
begin for k : = 1 tfl p j^q 

begin read (s ) ; write(s); a[i,k] := s 

s.dA: 
writeln 

writeln ; 
for k :« 1 iLQ P lln 
tieflip foil j 1= 1 In n jia 

begin read(s); write(s); b[k,j] := s 

pmi: 
writeln 

end ; 
writeln ; 
{multiply a * b} 
for i : = 1 tn m 

h&a.La fan J ^ ta n jin 
begin s := 0 ; 

for k : = 1 tfl. p xla s :=s +a[i,k3*b[k,j]; 
c[i , j] :* s; write(s ) 

££lil; 
writeln 

end ; 
writ eln 

SJDA 

1 
-2 

1 
-1 

2 
0 
0 
2 

3 
2 
1 

-3 

-1 
-2 

2 

3 
2 
1 

1 
6 
1 

-9 

10 
-4 

4 
-2 

Strings were defined earlier as sequences of characters enclosed 
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in single quote marks (chapter 1). Strings consisting of a 
single character are the constants of the standard type char 

(chapter 2); those of n characters (n>1), are defined as 
constants of the type defined by: 

pacKfid aiina^E i..n] at char 

Assignment (s®) is possible between operands of 1dpntical array 
types. The relational operators =. <>, <, >, <= and >* are 

applicable on operands of identical packed character arrays , 
where the underlying character set determines the ordering. 

Access to individual components of packed arrays is often 
costly, and the programmer is advised to pack or unpack a packed 
array in a single operation. This is possible through the 
standard procedures pack and unpack. Letting A be an array 
variable of type 

fliicay [m . .n] T 

and Z be a variable of type 

arcay.Cu..v] aL T 

where (n-m) >« (v-u), then 

pack(A,i.Z) means for j :« u Jtn v slU 
Z[j] :« A[j-u+i] 

and 
unpack (Z ,A ,i ) means for j :« u in v jla 

A[j-u+i] Z[j] 

where j denotes an auxiliary variable not occurring elsewhere in 
the program . 
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BLLflHD. IIEEB 

The record types are perhaps the most flexible of data 
constructs. Conceptually, a record type is a template for a 
structure whose parts may have quite distinct characteristics . 
For example, assume one wishes to record information about a 
person. Known are the name, the social security number, sex, 
date of birth, number of dependents, and marital status. 
Furthermore, if the person is married or widowed, the date of 
the (last) marriage is given; if divorced, one knows the date of 
the (most recent) divorce and whether this is the first divorce 
or not; and if single, given is whether an independent residency 
is established. All of this information can be expressed in a 
single “record**. 

More formally, a record 
number of components , 
components are not cons 
cannot be dir ect ly indexe 
compo n ent it s typ e and 
denot e it • T he s cope 
record in w hie h it is 
select ed compon ent be 
execut ing the pr ogram ) , t 
field iden tif iers r ather 

To take a simple examp 
complex numbers of the for 
and i is the square r 
*'complex**. However, the 
type to represent compl 
fields, both of type real, 
syntax necessary to expres 

is a structure consisting of a fixed 
called Zlslds. • Unlike the array, 

trained to be of identical type and 
. A type definition specifies for each 

n identifier, the field identifier . to 
f a field identifier is the innermost 
defined. In order that the type of a 

vident from the program text (without 
e record selector consists of constant 
han a computable value, 

le , assume one wishes to compute with 
m a+bi, where a and b are real numbers 
oot of -1, There is no standard type 
programmer can easily define a record 

ex numbers. This record would need two 
for the real and imaginary parts. The 

s this is : 

<record type> record <field list> end 
<field list> <fixed part> | <fixed part> ; <variant part> 1 

<variant part> 
<fixed part> <record section> {; <record section>} 
<record section> <field identifier> {, <field identifier>} : 

<type> I <empty> 

Applying these rules 
declaration: 

one can state the following definition and 

type complex = record re,im : real 
jsmi: 

var X : complex; 

where complex is a type identifier, re and im 
fields, and x is a variable of type complex, 
a record made up of two components or fields . 

are identifiers 
Consequently, x 

of 
is 
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Likewise, a variable representing a date can be defined as; 

date « record mo;(jan,feb,mar,apr,may,june , 
july ,aug,sept,oct,nov,dec); 

day; 1.,31; 
year; integer 

end 

a toy as; 

toy « record kind ; (ball,top,boat,doll,blocks 
game,model,book); 

cost ; real; 
received; date; 
enjoyed; (alot ,some,alittie,none); 
broken,lost; Boolean 

end 

or a homework assignment as; 

assignment « record subject;(history ,language ,lit, 
math,psych,science); 

assigned: date; 
grade; 0.,4; 
weight; 1..10 

end 

To reference a record component, the name of the record is 
followed by a point, and the respective field identifier. For 
example, the following assigns 5+3i to x; 

X .re ;« 5; 
X .im :» 3 

If the record is itself nested within another structure, the 
naming of the record variable reflects this structure. For 
example, assume one wishes to record the most recent smallpox 
vaccination for each member in the family, A possibility is to 
define the members as a scalar, and then the dates in an array 
of records: 

type family* (father ,mother,child 1,child2,child3); 
var vaccine: array F family 1 of, date; 

An update might then be recorded as: 

vaccine[child3].mo :* apr; 
vaccineichild3].day :* 23; 
vaccineichild3].year :« 1973 

Note: the type **date“ also includes, for instance, a 31st April, 
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{ program 7.1 
operations on complex numbers } 

program comp lex (output); 

£Qns.t fac * 4; 
type complex = record re.im : integer end : 
var X ,y : complex; 

n : integer ; 

Jaaflln 
X .r e : * 2 ; x ,im :» 7 ; 
y .r e : * 6; y ,im ; = 3 ; 
£axi n : «= 1 4 jifl. 

kaoin 
writeln(' x = ' .x .r e : 3 ,x .im : 3 , ' y = ' .y .r e :3 ,y .im ; 3 ) ; 
{x -f y} 
writeln(' sum = \x.re + y.re:3, 

X .im + y ,im :3); 
{x * y} 

writeln(' product = '.x.re*y.re - x.im*y.im:3, 
X .re*y .im + x .im*y .re :3) ; 

writ eln; 
X .re := x .re + fac; x .im := x .im - fac; 

end 

enk . 

x= 27 y= 63 
sum = 810 
product = -9 48 

x= 63 y= 63 
sum = 12 6 
product = 27 36 

x= 10-1 y= 6 3 
sum = 16 2 
product = 63 24 

X = 14 -5 y = 6 3 
sum = 20 -2 
product = 99 12 

The syntax for a record type also makes provisions for 
» implying that a record type may be specified as 

of several variants ■ This means that different 
although said to be of the same type, may assume 
which differ in a certain manner . The differences may 
a different number and different types of components . 

consisting 
variables , 
structures 
consist of 

Each variant 
declarations 
by one or 
case clause 

is characterised by a list . in 
of its pertinent components. Each 

more labels . and the set of lists 
specifying the data type of these 

parentheses, of 
list is labelled 
is preceded by a 
labels (i .e . the 
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type according to which the variants are discriminated). As an 
example, assume the existence of a 

type maritalstatus « (married, widowed, divorced, single) 

Then one can describe persons by data of the 

type person = 
record <attributes or fields common to all persons> ; 

case maritalstatus 
married: (<fields of married persons only>) ; 
single: (<fields of single persons only>) ; 

SUSL 

Usually, a component (field) of the record itself indicates its 
currently valid variant. For example, the above defined person 
record is likely to contain a common field 

ms : maritalstatus 

This frequent situation can be abbreviated by including the 
declaration of the discriminating component—the so-called iafl 
field —in the case clause itself, i ,e , by writing 

case ms : maritalstatus a£ 

The syntax defining the variant part is: 

<variant part> ::« case <tag field> <type identifier> oL 
<variant> {; <variant>} 

<varlant> ::= <case label list> : ( <field list> ) 1 
<empty > 

<case label list> ::« <case label> {, <case label>} 
<case label> ::* <constant> 
<tag field> ::« <identifier> : | <empty> 

It is helpful to ’’outline’* the information about a person, 
before defining it as a variant record structure, 

I , Person 
A, name (last, first) 
B, social security number (integer) 
C, sex (male, female) 
D, date of birth (month, day, year) 
E, number of dependents (integer) 
F , marital status 

if married ,widowed 
a, date of marriage (month, day, year) 

if divorced 
a, date of divorce (month, day, year) 
b, first divorce (false, true) 

, if single 
a, independent residency (false,true) 
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Figure 7 ,a is a corresponding picture of two "sample** people 
with different attributes . 

woodyard 
(A) 

robertsman 
edward nicolas 

845680539 (B) 627259003 

male (C) male 
aug I 30 | 1941 (D) mar | 15 | 1932 

1 (E) 4 

single 
(F) divorced 

true 
Feb 1 23 1 1 972 

-Falafi 

Figure 7#a Two sample people 

A record defining ’’person" can now be formulated as: 

^yp e a Ifa = packed array f 1. . 1 01 of char; 
status = (married ,widowed .divorced,single ) ; 
date = record mo : (jan ,feb .mar .apr .may , jun , 

July ,aug .sept .oct .nov .dec ) ; 
day : 1..31; 
year : integer 

s,asi; 
person = r ecord 

name : record first.last: alfa 
end ; 

ss : integer; 
sex : (male .female); 
birth : date; 
depdts : integer ; 
case ms : status 

married .widowed : (mdate: date); 
divorced : (ddate: date; 

firstd: Boolean); 
single : (indepdt : Boolean) 

Bnd ; {person} 

1. All field names must be distinct—even if they occur in 
different variants . 

2. If the field list for a label L is empty, the form is: 
L : () 

3. A field list can have only one variant part and it must 
succeed the fixed part (s ) , (However, a variant part may 
itself contain variants. Hence, it is possible to have nested 
variants .) 
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Referencing a 
reconstruction 
of type person 

record component is essentially a simple linear 
of the outline. As example, assume a variable p 

and "create” the first of the model people. 

p .name .last := ^woodyard 
p.name.first := 'edward 
p .ss :» 845680539; 
p .sex : = male ; 
p.birth.mo := aug; 
p .birth .day :« 30; 
P.birth.year := 1941; 
p.dep dts : = 1; 
p .ms := single ; 
p .indepdt := true 

A , The with statement 

The above notation can be a bit tedious, and the user may wish 
to abbreviate it using the with statement . The with clause 
effectively opens the scope containing the field identifiers of 
the specified record variable, so that the field identifiers may 
occur as variable identifiers. (Thereby providing an opportunity 
for the compiler to optimize the qualified statement.) The 
general form is: 

with <record variable> { , <record variable>} iin <statement> 

Within the component statement of the with statement one denotes 
a field of a record variable by designating only its field 
identifier (without preceding it with the notation of the entire 
record variable). 

The with statement below is equivalent to the preceding series 
of assignments : 

with p,name,birth do 
hBnln last := 'woodyard 

first := 'edward 
ss := 845680539; 
sex : = male; 
mo : = aug; 
day 30; 
year := 1941; 
depdts := 1; 
ms := single ; 
indepdt :* true 

end {with} 
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Likewise » 

var currentdate : date; 

with currentdate da 
if mo=dec t hsn 

begin mo := jan; year := year+1 

S.DJ1 
else mo :« succ{mo) 

is equivalent to 

var currentdate : date; 

jL£ currentdate .mo^dec then 
begin currentdate.mo := jan; 

current date .year := currentdate.year+1 
£011 

else currentdate.mo := succ (currentdate .mo ) 

And the following accomplishes the vaccine update exampled 
earlier ; 

with vaccine [ child3] xlo 
begin mo :* apr; day :« 23; year :* 1973 
S.DSL 

No assignments may be made by the qualified statement to any 
elements of the record variable list. That is, given: 

with r il£L S 

r must not contain any variables subject to change by S; for 
example : 

with a [ i] 
begin ... 

i :» i+1 
£Oil 

is not allowed . 

The form: 

iaiitJl r 1, r 2.rn sla S 

is equivalent to 

with r 1 jjfl 
w it h r2 do 

with rn dg S 
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Whereas: 
)LSLC. a ; array r2 - - 81 a£ integer; 

a ; 2..8; 

is NOT allowed, for the definition of a is ambiguous, 

var a : integer; 

b : record a: real; b: Boolean 
end : 

IS allowed, for the notation for the integer a is easily 
distinguishable from the real **b,a**. Likewise, the record 
variable b is distinguishable from the Boolean "b.b”. 
Within the qualified statement S in 

with b lUi S 

the identifiers a and b now denote the components b.a and b.b 
respectively. 
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A set type defines the set of values that is the powerset of its 
base type, i .e • the set of all subsets of values of the base 
type, including the empty set. The base type must be a scalar or 
subrange type, 

type <identifier> = Q.L <base type>; 

Implementations of Pascal may define limits for the size of 
sets, which can be quite small (e,g, the number bits ‘in a word). 

Sets are built up from their elements by set constructors 
(denoted by <set> in the syntax). They consist of the 
enumeration of the set elements, i ,e , of expressions of the base 
type, which are separated by commas and enclosed by set brackets 
[ and ] , Accordingly, [] denotes the empty set, 

<set> [ <element list> ] 
<element list> <element> {, <element>} | <empty> 
<element> <expression> 1 <expression> ,. <expression> 

The form m , ,n denotes the set of all elements i of the base type 
such that m<*i<s»n. If m>n , [m,,n] denotes the empty set. 

Examples of set constructors : 
[ 13] 

[i+J.i-j] 

The following operators are applicable on all objects with set 
structure: 

+ 
* 

union 
int ersection 
set difference (e ,g , A-B denotes the set of all elements 
of A that are not also elements of B,) 

Relational operators applicable to set operands are 

.<« 

* <> test on (in)equality 
test on set inclusion 

la set membership , The second operand is of a set 
type, the first of its associated base type; the 
result is true when the first is an element of the 
second, otherwise false." 
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-and- assignments 

type primary = (red .yellow ,blue ) ; 
color = set of primary ; 

var hue1.hue2 : color; 

hue1 := [red] ; hue2 []; 
hue2 :« hue2 + [succ(red)J 

var ch: char; 

chset 1.chset2: set nf *a\.*z*; 
chset 1 :» [ *d '.'a *,'g'] ; 
chset2 :» [ 'a '. . "z']-[ ch] 

y.ar. opcode : a.£t. aZ 0..7; 
add : Boolean; 

add :■* [2.3] <* opcode 

Set operations are relatively fast and can be used to eliminate 
more complicated tests. A simpler test for: 

if (ch = 'a ' )flxi {ch = 'b * )fli: (ch ='c ' )flx: (ch«'d * )flii (ch = '2 ' ) then s 
xS • 

if ch in [ *a*..'d*.*2'] then s 

{ program 8.1 

example of set operations } 

program setop (output); 

fyP^ days = (m ,t .w .t h .fr .sa .su ); 
week * set of days; 

v^ wk .work .free : week; 
d ! days; 

Erpcedima. check (s : week); {procedures introduced in chapter 11} 
)^an d : days ; 

bnnin write (' '); 
for d : = m in su iln 

if d in s ffann write ('x') else write('o'); 
writeln 

end : {check} 

l^agin work :» [] ; free :« [] ; 
wk : a [m . .su] ; 
d :« sa; free :« [d]+ free +[su]; 
check (free ); 
work :a wk - free; check(work); 
if free <« wk then write (' o*); 
if wk >e work then write ('k'); 
if HilKwork >a free) then write (' jack'); 
if [sa] <a work then write (' forget it'); 
writ eln 

anil. 

oooooxx 
xxxxxoo 
ok jack 
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On program development 

Programming—in the sense of designing and formulating 
algorithms—is in general a complicated process requiring the 
mastery of numerous details and specific techniques. Only in 
exceptional cases will there be a single good solution. Usually, 
so many solutions exist that the choice of an optimal program 
requires a thorough analysis not only of the available 
algorithms and computers but also of the way in which the 
program will most frequently be used. 

Consequently, the construction of an algorithm should consist of 
a sequence of deliberations. investigations, and design 
decisions. In the early stages, attention is best concentrated 
on the global problems, and the first draft of a solution may 
pay little attention to details. As the design process 
progresses, the problem can be split into subproblems, and 
gradually more consideration given to the details of problem 
specification and to the characteristics of the available tools. 
The terms ^ t eowise refinement [2] and 5.iLC.U£jLUIlBii andgrarnmilia [ ^] 
are associated with this approach. 

The remainder of this chapter illustrates the development of an 
algorithm by rewording (to be consistent with Pascal notation) 
an example C .A .R . Hoare presents in Structured Programming 
[4.“Notes on Data Structuring*’] . 

The assignment is to generate the prime numbers falling in the 
range 2..n, where n>*2. After a comparison of the various 
algorithms, that of Eratosthenes' sieve is chosen because of its 
simplicity (no multiplications or divisions). 

The first formulation is verbal. 

1. Put all the numbers between 2 and n into the “sieve”, 
2. Select and remove the smallest number remaining in the 

sieve , 
3. Include this number in the “primes”. 
4. Step through the sieve, removing all multiples of this 

number . 
5. If the sieve is not empty, repeat steps 2—5. 

Although initialization of variables is the first step in the 
execution of a program, it is often the last in the development 
process. Full comprehension of the algorithm is a prerequisite 
for making the proper initializations; updating of these 
initializations with each program modification is necessary to 
keep the program running. (Unfortunately, updating is not always 
sufficlent ! ) 

Hoare chooses a set type with elements 2.,n to represent both 
the sieve and the primes. The following is a slight variation of 
the program sketch he presents. 



53 

^onst n * 10000; 

s ieve .primes : s.£lL SlL 2.,n; 
next . j : integer ; 

JajBflln {initialize} 
sieve [2.,n]; primes := []; next :« 2; 
repeat (find next prime} 

EilULs, not (next in sieve) next :« succ(next); 
primes :* primes + [next] ; 
j := next; 
JflLilllg, j<*n iln {eliminate} 

iiaain sieve sieve - [j] ; j :» j next 
SLDA 

yntil sieve*[] 
snsL • 

As an exercise Hoare makes the assignment to rewrite the 
program. so that the sets only represent the odd numbers. The 
following is one proposal. Note the close correlation with the 
first solution • 

gmiSt. n = 5000; {n' = n div 2} 
\LSLXL sieve.primes : set n£ 2..n: 

next . j .c : integer; 
ilgfllQ {initialize} 

sieve := [2,,n]; primes :« []; next :« 2; 
repeat {find next prime} 

ILhlls. nntCnext in sieve) dn next :» succ(next); 
primes :« primes + [next] ; 
c := 2*next - 1; {c * new prime} 
j :“ next ; 

iLJllle j<®n jdn {eliminate} 
sieve :« sieve - [ j] ; j := j+c 

&dA 
until sieve=[] 

snsL • 

It is desirable that all basic set operations are relatively 
fast. Many implementations restrict the maximum size of sets 
according to their **wor dlengt h **. so that each element of the 
base set is represented by one bit (0 meaning absence. 1 meaning 
presence). Most implementations would therefore not accept a set 
with 10.000 elements. These considerations lead to an adjustment 
in the data representation, as shown in program 8.2, 

A large set can be represented as an array of smaller sets such 
that each ’’fits’* into one word (implementation dependent). The 
following program uses the second sketch as an abstract model of 
the algorithm. The sieve and the primes are redefined as arrays 
of sets; next is defined as a record. The output is left 
undeveloped. 
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{ program 8,2 
generate the primes between 3.. 10000 using a 
sieve containing odd integers in this range,} 

program primes (output); 

const wdlength = 59; {implementation dependent} 
maxbit = 58; 
w = 84; {w = n div wdlength div 2} 

var sieve,primes : array[0..w] pf set aL 0.,maxbit; 
next : record word,bit :integer 

£0X1; 
j,k,t,c : integer; empty : boolean; 

begin {initialize} 
for t : =® 0 w do 

begin sieveLt] := [0..maxbit] ; primes[t] ;= [] end 
sieve[0] :« sieve[0] - [0] ; next .word ;= 0; 
next .bit :« 1; empty :* false; 

with next 
repeat { find next prime } 

while nili.(bit in sieve[word] ) jdn bit ;* succ(bit); 
primes[word] := primes[word] + [bit]; 
c 2»bit + 1; 
j : = bit ; k := word; 
while k<«w dn {eliminate} 
begin sieve[k] ;= sieve[k] - [j] ; 

k := k + word*2; j ;= j + c; 
while j>maxbit dn 

begin k := k+1; j ;= j -wdlength 

SldA 
s.dA ; 
i£ sieve[word]=[] t hen 

begin empty := true; bit :* 0 

^ end; 
while empty and (word<w) dn 

begin word :* word + 1; empty := s iev e [ wor d] *[ ] 
end 

until empty; {ends with} 

nml. 
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FILE TYPES 

In many ways the simplest structuring method is the sequence. In 
the data processing profession the generally accepted term to 
describe a sequence is a s.eguejitia 1 file. Pascal uses simply the 
word lilfi to specify a structure consisting of a sequence of 
components—a11 of which are of the same type. 

A natural ordering of the components is defined through the 
sequence, and at any instance only one component is directly 
accessible. The other components are accessible by progressing 

sequentially through the file. The number of components, called 
the Ifinath of the file, is not fixed by the file type 

definition. This is a characteristic which clearly distinguishes 
the file from the array. A file with no components is said to be 
empty , 

^YPB <identifier> = file uf <type>; 

The declaration of every file variable f automatically 
introduces a huZlQr . denoted by ff , of the component 
type. It can be considered as a window through which one can 
either inspect (read) existing components or append (write) new 
components , and which is automatically moved by certain file 
operators . 

The sequential processing and the existence of a buffer variable 
suggest that files may be associated with s econdarv stnraap and 
aarlpherals . Exactly how the components are allocated is 
implementation dependent, but we assume that only some of the 
components are present in primary store at any one time, and 
only the component indicated by ft is directly accessible. 

When the window ft is moved beyond the £nd flf a file f , the 
standard Boolean function eof(f) returns the value true, 
otherwise false. The basic file-handling operators are: 

reset (f) resets the file window to the beginning for the 
purpose of reading, i .e . assigns to ft the value 
of the first element of f . eof(f) becomes false 
if f is not empty; otherwise, ft is not defined, 
and eof(f) remains true. 

rewrite(f) precedes the rewriting of the file f. The current 
value of f is replaced with the empty file. 
eof(f) becomes true, and a new file may be 
written. 

get (f) advances the file window to the next component; 
i .e . assigns the value of this component to the 
buffer variable ft • If no next component exists , 
then eof (f) becomes true, and the resulting value 
of ft is not defined. The effect of get (f) is 
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defined only if eof(f) is false prior to its 
execution • 

put(f) appends the value of the buffer variable fT to | 
the file f. The effect is defined only if prior | 
to execution the predicate eof(f) is true, eof(f) j 
remains true, and fT becomes undefined. i 

In principle, all the operations of sequential file generation 
and inspection can be expressed entirely in terms of the four 
primitive file operators and the predicate eof. In practice, it 
is often natural to combine the operation of advancing the file 
position with the access to the buffer variable. We therefore 
introduce the two procedures read and write as follows: 

read(f,x) is equiv. to x :* fT: get(f) 
write(f,x) is equiv. to fT :«* x; put(f) 

Note: The Standard defined by the Report mentions these 
abbreviations only for x being of type char. 

The advantage of using these procedures lies not only in 
brevity, but also in conceptual simplicity, since the existence 
of a buffer variable fT, whose value is sometimes undefined, may 
be ignored. The buffer variable may, however, be useful as a 
“lookahead” device. 

Examples of declarations -and- 
var data : file a£. integer; 

a : integer; 

statements with files 

a :* dataT: get(data) 
read(dat a ,a) 

var club : file nf person; 
P : person; 

clubT :* p; put(club) 
writ e(clu b ,p) 

Examples of partial programs: 
1. Read a file f of real numbers and compute their sum S, 

S : * 0 ; r es et ( f) ; 
while not eof(f) djj. 

begin read(f,x); S :« S + x 
end 

2. The following program fragment operates on two files of 
ordered sequences of integers 

f1,f2, ... , fm and g1*g2, ... ,gn 

such that f(i+1) >■ f(i) and g(j+1) >= g(j) » for all i,j 
and merges them into one ordered file h such that 

h(k+1) >» h(k) for k » 1,2, ... ,(m+n-1). 

It uses the following variables: 
endfg : Boolean; 
f,g,h : file of. integer 
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{ program part 
•merge f and g into h } 

jlfiflin reset(f); reset(g); rewrite(h); 
endfg ; *» eof(f) flu eof(g); 
while not endfg dn 

kaaln i£ fT<gT then 
tififlin hT :« f T; get(f): 

endfg ;* eof(f) 
end else 

fa-Sflin hT :« gT ; get (g) ; 
endfg :« eof(g) 

end ! 

put(h) 
end ; 

SlhAle not eof(g) dn 

b.SPln hT ;» gT; put(h); 
get(g) 

£M; 
w-hlle ojQjL eof(f) xia 
kSflin hT :« fT; put(h); 

get(f) 
end 

end 

Files may be local to a program (or local to a procedure), or 
they may already exist outside the program. The latter are 
called srnal .f.llss » External files are passed as parameters 
in the program heading (see chapter 13) into the program. 

A. Textfiles 

Files whose components are characters are called textfiles. 
Accordingly, the standard type text is defined as follows: 

tvDe text » file nf char; 

Texts are usually subdivided into lines . A straight-forward 
method of indicating the separation of two consecutive lines is 
by using control characters. For instance, in the ASCII 
character set the two characters ex. (carriage return) and 
(line feed) are used to mark the end of a line. However, many 
computer installations use a character set devoid of such 
control characters; this implies that other methods for 
indicating the end of a line must be employed. 

We may consider the type text as being defined over the base 
type char (containing printable characters only) extended by a 
(hypothetical) line separator character. This control character 
cannot be assigned to variables of type char, but can be both 
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recognized and generated by the following special textfile 
operators : 

writeln(x) terminate the current line of the textfile x 

readln(x) skip to the beginning of the next line of the 
textfile X (xt becomes the first character of the 
next line) 

eoln(x) a Boolean function indicating whether the end of 
the current line in the textfile x has been 
reached, (If true, xf corresponds to the position 
of a line separator, but xf is a blank.) 

If f is a textfile and ch a character variable, the following 
abbreviated notation may be used in place of the general file 
operators , 

abbreviated form expanded form 

write (f .ch ) ft ch; put(f) 

read(f.ch) ch := ft ; get (f ) 

The following program schemata use the above conventions to 
demonstrate some typical operations performed on textfiles. 

1. Writing a text y. Assume that P (c) computes a (next) 
character and assigns it to parameter c. If the current line 
is to be terminated, a Boolean variable p is set to true; 
and if the text is to be terminated, q is set to true. 

rewrite (y ); 

rep eat P (c ); write(y.c) 

until p ; 
writeln (y ) 

until q 

2, Reading a text x. Assume that Q (c) denotes the processing of 
a (next) character c, R denotes an action to be executed 
upon encountering the end of a line. 

reset (x ); 
whila nat. eof(x) 
liaaln 

while not eoln (x ) iln 
taflin read (x .c ) ; Q (c ) 
nnl; 

R ; readln(x) 

&dA 
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3. Copying a text x to a text y, while preserving the line 
structure of x , 

reset(x); rewrite(y); 
not eof(x) 

ilfiSLin {copy a line} 
Ehile not eoln(x) 

ilfiflin read (x ,c ); write (y,c) 
&nsL; 

readln(x); writeln(y) 

B. The standard files “input** and **output 

^ textfiles input and output** usually represent the 
standard I/O media of a computer installation (such as the card 
reader and the line printer). Hence, they are the principal 
communication line between the computer and its human user. 

Because these two files are used very frequently, they are 
considered as default values** in textfile operations when the 
textfile f is not explicitely indicated. That is 

is equivalent to 

write(ch) write (output ,ch ) 

read (ch ) read(input,ch) 

writeln writeln (output ) 

r eadln readln (input ) 

eof eof(input) 

eoln eoln (input ) 

Note ; The standard 
applied to the file 

procedures reset (rewrite) 
input (output). 

must no t be 

Accordingly. for the case where x is ‘*input*‘ and y is “output**, 
the first two of the program schemata can be expressed as 
follows; (assume var ch: char) 

Writing a text on file “output“: 

naaeat 
Haas at P(ch); write (ch) 
until P: 
writeln 

until q 
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Reading a text from file "input”: 

while nfliL eof do. 

hpgin {process a line} 

while not eoln jla 

henin read(ch); Q (ch ) 

R ; r eadin 

SJHii 

Further extensions of the procedures write and read (for the 

convenient handling of legible input and output data) are 

described in chapter 12, 

The next two examples of programs show the use of the textfiles 

input and output. (Consider what changes would be necessary if 

only get and put, not read and write, are to be used.) 

{ program 9,1 —— frequency count of letters in input file } 

program fcount (input,output); 

var ch : char; 

count: aili:ay.[ 'a ' •.'z *] integer; 

letter: p et of. 'a ', . *z '; 

begin letter := ['a'..'z']; 

for ch := 'a ' tn 'z' da count[ch] := 0; 

while, aei. eof de 

defliQ 
while pat eoln da 

begin read(ch); write(ch); 

i£ ch in letter then count[ch] :» count[ch]+1 

end: 
writeln; readln 

end 

end. 

In some installations when a textfile is sent to a printer, the i 
first character of each line is used as a printer control | 

character; i .e . this first character is not printed, but instead [ 

interpreted as controlling the paper feed mechanism of the I 
printer. The following conventions are in wide use: I 

blank 

'0' 

'1 • 

feed one line space before printing 

feed double space before printing 

skip to top of next page before printing 

no line feed (overprint ) 
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j The following program inserts a blank at the beginning of each 
I line, resulting in normal single space printing. 

{ program 9.2 — insert leading blank } 

arunrafP insert (input .output ); 

var ch: char; 

Jaaflin 
jfltiiilfi not eof jia 
llfiflin write (• '); 

Mobile Hilt, eoln do 

Jlfiain read(ch); write(ch) 
s,asL; 

writeln; readln 
end 

Bnd . 

If read and 

parameter . the 
and output are 
the parameter 

write are used without indication 
default convention specifies that the 
assumed; in which case, they must be 
list of the program heading. 

of a file 
files input 

mentioned in 
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PniKlER ULLSl 

A stat 1n variable (staticly allocated) is one that is declared 
in a program and subsequently denoted by its identifier. It is 
called static, for it exists (i.e, memory is allocated for it) 
during the entire execution of the block to which it is local, A 
variable may, on the other hand, be generated dynamically 
(without any correlation to the static structure of the program) 
by the procedure new. Such a variable is consequently called a 

dYnamin variable,* 

Dynamic variables do not occur in an explicit variable 
declaration and cannot be referenced directly by identifiers. 
Instead, generation of a dynamic variable introduces a □nint er 
value Uhich is nothing other than the storage address of the 
newly allocated variable). Hence, a pointer type P consists of 
an unbounded set of values pointing to elements of a given type 
T, P is then said to be bound to T, The value nil is always an 
element of P and points to no element at all, 

type <identifier> * T <type identlfier>; 

If, for example, p is a pointer variable bound to a type T by 
the declaration 

var p : TT 

then p is a reference to a variable of type T, and pt denotes 
that variable. In order to create or allocate such a variable, 
the standard procedure new is used. The call new(p) allocates a 
variable of type T and assigns its address to p. 

Pointers are a simple tool for the construction of complicated 
and flexible data structures. If the type T is a record 
structure that contains one or more fields of type TT, then 
structures equivalent to arbitrary finite graphs may be built, 
where the T's represent the nodes, and the pointers are the 

edges , 

As an example, consider the construction of a "data bank' for a 
given group of people. Assume the persons are represented by 
records as defined in chapter 7, One may then form a chain or 
linked list of such records by adding a field of a pointer type 
as shown below, 

type link = fperson; 
• • • 

person = record 
• • • 

next ; link; 

• • • 

end ! 

A linked list of n persons can be represented as in figure 10,a. 
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Figure 10.a Linked list 

A variable of type link, called *‘first'* points to the first 
element of the list. The link of the last person is nil. 

If we assume that the file “input” contains n social security 
numbers, then the following code could have been used to 
construct the above chain, 

V-ar first, p: link; i: integer; 

first nil: 
for i : = 1 n dn 
bSffin read(s); new(p); 

P T .next :* first; 
p T .ss : « s ; 
first : p 

end 

For purposes of access, one introduces another variable, say pt, 
of type link and allows it to move freely through the list. To 
demonstrate selection, assume there is a person with social 
security number equal to n and access this person. The strategy 
is to advance pt via link until the desired member is located: 

pt :« first ; 
while ptT.ss <> n xia Pt : *= ptT.next 

In words this says, “Let pt point to the first element. While 
the social security number of the member pointed to (referenced) 
by pt does not equal n, advance pt to the variable indicated by 
the link (also a pointer variable) of the record which pt 
currently references." Note in passing that 

first! .next!.next 
accesses the third person. 

Note that this simple search statement works only, if one is 
sure that there is at least one person with security number n on 
the list. But is this realistic? A check against failing to 
recognize the end of the list is therefore mandatory. One might 
first try the following solution: 

pt :« first; 

MLllile (pt <> nil ) and (ptT.ss <> n) ila Pt :« ptT.next 
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But recall section 4.A. If pt - nil» the variable ptT» 
referenced in the second factor of the termination condition, 
does not ex ist at all. The following are two possible solutions 
which treat this situation correctly: 

(1) pt :* first; b :* true; 
while (pt <> nil) ami b da 

if ptT.ss - n then b false else pt ptT.next 

(2) pt : « first; 
while pt <> nil £Lq 
begin if ptT.ss « n then goto 13; 

pt :■ pt T .next 
end 

To pose another problem, say one wishes to add the sample person | 
to the bank. First a space in memory must be allocated, and a 
reference created by means of the standard procedure nJBJfiL* 

new(p) allocates a new variable v and assigns 
the pointer reference of v to the 
pointer variable p. If the type of v is 
a record type with variants, then new(p) 
allocates enough storage to accommodate 
all variants. The form 

new(p,t1, ... ,tn) can be used to allocate a variable of 
the appropriate size for the variant 
with tag field values equal to the 
constants t1...tn. The tag field values; 
must be listed contiguously and in the 
order of their declaration. Any trailing 
tag fields may be omitted. This does 
imply assignment to the tag fields. 

Warning: if a record variable pT is created by the second form 
of new, then this variable must not change its variant during 
program execution. Assignment to the entire variable is not 
allowed; however one can assign to the components of pT« 

The first step in programming a solution to our problem posed 
above, is to introduce a pointer variable. Let it be called 
newp• Then the statement 

new(newp) 

will allocate a new variable of type Person. 
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In the next step the new variable, referenced by the pointer 
newp, must be inserted after the member referenced by pt. See 
figure 10.b. 

Figure lO.b Before 

Insertion is a simple matter of changing the pointers: 

newpT.next :* ptT.next; 
ptT.next := newp 

Figure 10,c illustrates the result. 
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Deletion of the member following the auxiliary pointer pt is 
accomplished in the single instruction: 

ptT.next :» ptT .next? .next 

It is often practical to process a list using 2 pointers—one 
following the other. In the case of deletion, it is then likely 
that one pointer—say p1—precedes the member to be deleted, and 
p2 points to that member. Deletion can then be expressed in the 

single instruction: 

pit.next :* p2T .next 

One is, however, warned that deletions in this manner will, in 
most installations, result in the loss of usable (free) store. 
A possible remedy is to maintain an explicit list of deleted 
elements. New variables will then be taken from^this list (if it 
is not empty) instead of calling the procedure *’new**. A deletion 
of a list element now becomes a transfer of that element from 

the list to the free element list. 

piT.next :* p2t.next; 
p2t.next := free; 
free :* p2 

Linked nlInnatIan is the most efficient representation for ; 
inserting and deleting elements. Arrays require shifting down j 
(up) of every element below the index in the case of insertion ; 
(deletion), and files require complete rewriting. 

For an example involving a tree structure instead of a linear 
list, refer to chapter 11 (program 11.5). 

A word to the wise 

Pascal provides a wide variety of data structures. It is left to | 
the programmer to evaluate his problem in detail sufficient to * 
determine the structure best suited to express the situation and 
to evaluate the algorithm. As indicated by the *'data bank*' ^ 
example, linked allocation is especially nice for insertion and | 
deletion. If, however, these operations happen infrequently, but} 
instead efficient access is mandatory, then the representation] 
of the data as an array of records is usually more appropriate, j 
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PJIIULQUJES FUNCTIONS 

As onB Qfrows in the art of computer propramminp, one constructs 

programs in a sequence of C,£finement aiLfias.. At each step the 
programmer breaks his task into a number of subtasks, thereby 
defining a number of partial programs. Although it is'possible 
to camouflage this structure, this is undesirable. The concept 

of the anaaadaria (or autooutine ) allows the display of the 
subtasks as explicit subprograms . 

A . Procedures 

The anaaatlure declaratinn serves to define a program part and to 
associate it with an identifier, so that it can be activated by 
a 0.r,QCec^V^r? g^liatem^pt . The declaration has the same form as a 
program. except it is introduced by a anocedure heading instead 
of a program heading. 

Recall the program part that found the minimum and maximum 
values in a list of integers. As an extension, say that 
increments of j1.*.jn are added to a[1].,.a[n], then min and max 

are again computed. The resulting program, which employs a 
procedure to determine min and max, follows. 



{ program 11.1 
extend program 6,1 } 

program minmax2(input.output); 
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coast n = 20; 
var a : array [ 1. .n1 siL integer; 

i.j : int eger ; 
procedure minmax; 

war i :1,.n; u .v .min .max rinteger; 
begin min := a[ 1] ; max := min; i := 2; 

while i<n da 
a[i+1] begin u 

if u>v 
:= a[i]; 
then 

y : = 

be,flip if u>max t hen max : = u ; 
V <m i n 

end else 
then min : = y 

dagln jf y >max then max : = y ; 

jsnd: 

if u <min iiion min : “ u 

i := i+2 

end,; 
if i=n t hen 

jL£ a[n]>max then max :« a[n] 
else a[n] <min then min :« a[n] ; 

writeln (min .max ); writeln 
end : {minmax} 

begin {read array} 
for i : = 1 JLa n dll 

begin read(a[i] ); write(a[i] :3) 
s.nA; 

writeln; 
minmax ; 
ISLXL i 1= 1 ta n 

begin read(j); a[i] := a[i]+j; write(a[i];3) 

sod: 
writeln ; 
minmax 

ond . 

-1 -3 4 7 
-6 

8 54 23 -5 
79 

3 9 9 9 -6 45 79 79 3 5 

44 40 7 15 9 88 15 -4 7 43 12 17 -7 48 59 39 9 7 7 12 
-7 88 

Although simple, this program illustrates many points: 

1. The simplest form of the PROCEDURE HEADING, namely: 

<identifier >; 
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LOCAL VARIABLES, Local to procedure minmax are the 
variables i, u, v, min, and max. These may be referenced 
only within the scope of minmax; assignments to these 
variables have no effect on the program outside the scope 
of minmax , 

3, GLOBAL VARIABLES, Global variables are a, i, and j. They 
may be referenced throughout the program, (e,g. The first 
assignment in minmax is min :« q[ 1l ,) 

4, NAME PRECEDENCE , Note that i is the name for both a 
global and a local variable. These are not the same 
variable! A procedure may reference any variable global 
to it, or it may choose to redefine the name. If a 
variable name is redefined, the new name/type association 
is then valid for the scope of the defining procedure, 
and the global variable of that name (unless passed as a 
parameter) is no longer available within the procedure 
scope. Assignment to the local i (e .g . i :« i+2) has no 
effect upon the global i; and since i denotes the local 
variable, the global variable i is effectively 
inaccessible . 

It is a good programming practice to declare every 
identifier which is not referenced outside the procedure, 
as strictly local to that procedure. Not only is this good 
documentation, but it also provides added security. For 
example, i could have been left as a global variable; but 
then a later extension to the program which called 
procedure minmax within a loop controlled by i would 
cause incorrect computation, 

5, The PROCEDURE STATEMENT, In this example the statement, 
"minmax** in the main program activates the procedure. 

Examining the last example in more detail, one notes that minmax 
is called twice. By formulating the program part as a 
procedure—i .e . by not explicitly writing this program part 
twice—the programmer conserves not only his typing time, but 
also space in memory. The static code is stored only once, and 
space defining local variables is activated only during the 
execution of the procedure. 

One should not hesitate, however, from formulating an action as 
a procedure—even when called only once—if doing so enhances 
the readability. Defining development steps as procedures makes 
a more communicable and verifiable program. 

Often necessary with the decomposition of a problem into 
subroutines is the introduction of new variables to represent 
the arguments and the results of the subroutines. The purpose of 
such variables should be clear from the program text. 

The following program extends the above example to compute the 
minimum and maximum value of an array in a more general sense. 



{ program 11,2 
extend program 11.1 } 

program minmax3(input .output) ; 

70 

\ 

const n ® 20; 
type list = • n ] aL integer; 
var a,b : list; 

i min 1 ,min2,max1.max2 : integer; 

procedure minmax fvar g:list; ^ax j .k :integer ) ; 
yar i : 1 . .n ; u .v :integer; 

begin j : = g [ 1] ; k : = j ; i : = 2; 
J^ilii£ i<n dii 
begin u :=g[i]; v :=g[i + 1]; 

i£ u >v iban 
begin u >k then k :* u ; 

If v<j ftifin j :* y 
3.1^0. 

begin y >k then k ;= y; 
if u < j flian j : = u 

££iil; 
i : = i +2 

£jiil; 
if i=n iJifiin 

if g[n]>k then k := g[n] 
£i5.£ if g[n] <j iJifin j g[n] ; 

end : {minmax} 

begin {read array} 
fjan i 1 fil n iln 

begin read(a[i] ); write(a[i] :3) gnd ; 
writeIn; 
minmax (a ,min 1 .max 1); 
writeln(minl.maxl.maxl-minl); writeln; 
Lar. i := 1 ffl n sLo. 

begin read(b[i] ); write(b[i] :3) end ; 
writeln ; 
minmax (b .min2,max2); 
writeln(min2,max2,max 2-min2); 
writeln(abs(min1-min2),abs(max1-max2)); writeln ; 
for i : * 1 n dQ 

begin a[i] a[i] + bli]; write(a[i]:3) ££Ld .* 
writeln; 
minmax (a .min 1 .max 1 ) ; 
writeln (min 1 .max 1 .max 1-min 1 ) 

-1 -3 4 7 8 54 23 -5 3 9 
-6 79 85 

45 43 3 8 1 34 -8 1 4 34 
-8 45 53 

2 34 

44 40 7 15 9 88 15 -4 7 43 

-7 88 95 

9 9 -6 45 79 79 3 1 15 

3 8 -1 3 -2 -4 6 6 6 7 

12 17 -7 48 77 75 9 7 7 12 
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In program 11,2, one encounters the second form of the procedure 
heading: 

procedure <identifier> ( <formal parameter section> 
{; <formal parameter section>} ); 

The formal parameter section lists the name of each formal 
parameter followed by its type. It is followed by the 
declaration part, which introduces the objects local to the 
procedure, 

The labels in the label definition part and all identifiers 
introduced in the formal parameter part, the constant definition 
part, the type definition part, the variable, procedure, or 
function declaration parts are local to the procedure 
declaration which is called the scooe of these objects. They are 
not known outside their scope. In the case of local variables, 
their values are undefined at the beginning of the statement 
part, 

E.ar.amfit ers provide a substitution mechanism that allows a 
process to be repeated with a variation of its arguments, (e,g, 
minmax is called twice to scan array a and once to scan array 
b,) 

One notes a correspondence between the procedure heading and the 
procedure statement. The latter contains a list of actual 
oaramet ers■ which are substituted for the corresponding formal 
parameters that are defined in the procedure declaration. The 
correspondence is established by the positioning of the 
parameters in the lists of actual and formal parameters. There 
exist four kinds of parameters: so-called value parameters, 
variable parameters, procedure parameters (the actual parameter 
is a procedure identifier), and function parameters (the actual 
parameter is a function identifier). 

Program 11,2 shows the case of the variable oaramet er . The 
actual parameter must Jig. g variable: the corresponding formal 
parameter must be preceded by the symbol var and represents this 
actual variable during the entire execution of the procedure. 
Furthermore, if x1,,xn are the actual variables that correspond 
to the formal variable parameters v1,,vn, then x1,,xn should be 
distinct variables , 

All address calculations are done at the time of the procedure 
call. Hence, if a variable is a component of an array, its index 
expression is evaluated when the procedure is called. 

To describe the memory allocation pictorially, one could draw an 
arrow for each variable parameter from the name of the formal 
parameter to the memory location of the corresponding actual 
parameter. Any operation involving the formal parameter is then 
performed directly upon the actual parameter. Whenever the 
parameter represents a resuIt of the procedure—as is the case 
with j and k above—it must be defined as a variable parameter. 

When no symbol heads the parameter section, the parameter(s) of 
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this section are said to be value □ arameter (s ) . In this case the 
actual parameter must an expression (of which a variable is a 
simple case). The corresponding formal parameter represents a 
local variable in the called procedure. As its initial value, 
this variable receives the current value of the corresponding 
actual parameter (i.e. the value of the expression at the time 
of the procedure call). The procedure may then change the value 
of this variable by assigning to it: this cannot, however, 
affect the value of the actual parameter. Hence, a value 
parameter can never represent a result of a computation. 

The difference in the effects of value and variable parameters 
is shown in program 11.3. 

{ program 11.3 
procedure parameters } 

program parameters(output): 

var a .b! integer; 
procRdure h(x: integer; Y" integer): 
begin x :«x+1;y :*y+1; 

wr iteln (x .y ) 
end; 
begin a :« 0; b := 0; 

h (a .b ); 
wr it eln (a .b ) 

t 0 trans f er a r esult of the 
is gene rally pr eferred, The 

an d one is prot ected against 
H owever in t he case where a 

e ( e .g . an arr ay) . one should be 

ion is rel at iv ely expensive, and 
al locate the copy may be large. 

ele ment in the arra y occurs only 
fin e the p aram et er as a variable 

In program 11.2 none of the values in array g are altered; i.e. 
g is not a result. Consequently g could have been defined as a 
value parameter without affecting the end result. To understand 
why this was not done. it is helpful to look at the 
implementation. 

A procedure call allocates a new area for each value parameter; 
this represents the local variable. The current value of the 
actual parameter is “copied** into this location; exit from the 
procedure simply releases this storage. 

If a parameter is not used 
procedure. a value parameter 
referencing is then quicker, 
mistakenly altering the data, 
parameter is of a structured typ 
cautious, for the copying operat 
the amount of storage needed to 
Because referencing of each 
once, it is desirable to de 
parameter . 

1 
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One may change the dimension of the array simply by redefining 
n. To make the program applicable for an array of reals, one 
needs only to change the type and variable definitions; the 
statements are not dependent upon integer data . 

The use of the procedure identifier within the text of the 
procedure itself implies recursive execution of the procedure. 
Problems whose definition is naturally recursive, often lend 
themselves to recursive solutions. An example is the following 
program. Given as data are the symbolic expressions: 

(a +b ) * (c -d ) 
a+b *c-d 
( a + b )* c-d 
a +b * (c -d ) 
a *a *a *a 
b +c * (d +c *a *a ) *b +a . 

which are formed according to the syntax of figure 11.a. A 
period terminates the input. 

expression 

factor 

"^^identif ie^ . 

^ expression —^ 

identifier 

letter 

Figure 11.a Expressions 
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The task is to construct a program to convert the expressions 
into postfix form (Polish notation). This is done by 
constructing an individual conversion procedure for each 
syntactic construct (expression, term, factor). As these 
syntactic constructs are defined recursively, their 
corresponding procedures may activate themselves recursively. 
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{ program 11,4 

conversion to postfix form } 

Program postfix (input,output); 

V.ail ch : char ; 

find ; 
begin 

find; 

rep eat read(ch) 
until (cho* ') and not eoln (input) 

op 
expression; 
: char ; 

procedure term; 

factor ; 
dnnln if ch =' (' t hen 

begin find; expression; 
and else write(ch); 
find 

end; {factor} 

{ch ) } 

bgflin factor; 
while ch='*' dn 
begin find; factor; write('*') 

end 
end ; {term} 

begin term; 

Mobile (ch = %')i2ii(ch = '-') dn 
deain op ch; find; term; write(op) 
end 

end : {expression} 

begin find; 
repeat write(' 

expression ; 
writ eln 

until ch = ' .' 

end • 

'); 

ab +cd-* 
abc*+d- 
a b +c -^-d - 
abed-*+ 
a a *a *a * 
bedea *a *+*b *+a + 

The binary free is a data structure that is naturally defined in 
recursive terms and processed by recursive algorithms. It 
consists of a finite set of nodes that is either empty or 
consists of a node (the root) with two disjoint binary trees. 
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called the left and right subtrees [ 61 , Recursive procedures for 
generating and traversing binary trees naturally reflect this 
mode of definition. 

Program 11,5 builds a binary tree and traverses it in pre-, in-, 
and postorder. The tree is specified in preorder, i,e. by 
listing the nodes (single letters in this case) starting at the 
root and following first the left and then the right subtrees so 
that the input corresponding to figure 11.b is; 

she , ,de,,fg,,.hi..Jkl..m..n.. 

where a point signifies an empty subtree. 
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{ program 11.5 
binary tree traversal 1 

program traversal(input,output); 

type ptr « Tnode; 
node * record info : char; 

llink,rlink ; ptr 
end ; 

I var root : ptr; ch ; char; 

j CXQCsdure preorder(p : ptr); 
I ]i£ja.in LL ponll than 

begin write(pT .info); 
preorder(pT .llink); 
preorder(pT .rlink) 

end 
end: {preorder} 

procedure inorder(p : ptr); 

bgflin If. ponll then 
begin inorder(pT .llink); 

write(p T .info); Iinorder(pT .rlink) 
end 

! end: (inorder) 
i 
I procedure postorder(p : ptr); 

I bsflin If ponll then 
^ begin post order(pT .llink); 

postorder(pT.rlink); 
write(p T .info) 

end 

end: {postorder} 

prncedure enter(var p:ptr); 
begin read(ch); write(ch); 

If cho*.* then 
begin new(p); 

P T .info ;= ch; 
ent er(p T .llink); 
ent er(p T.rlink); 

end 
else p :* nil 

end I{enter} 

becin 

writ e(* ') 
writ e( ' ') 
writ e(' ') 
writ e(' *) 

end , 

enter(root); writeln; 
preorder(root); writeln; 
inorder(root); writeln; 
post order(root); writeln 

abc..de..fg..• 
abcdefghijklmn 
cbedgfaihlkmjn 
cegfdbilmknjha 

hi jkl..m. .n.. 

I 
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! 

The reader is cautioned against applying recursive techniques j 
indiscriminately. Although appearing **clever*\ they do not | 
always produce the most efficient solutions . 

If a procedure P calls a procedure Q and Q also calls P, then | 
either P or Q must be *'pre-announced ** by a forward declaration | 
(section 11 .C ), ‘ 

The standard procedures in Appendix A are predeclared in every 
implementation of Pascal. Any implementation may feature ' 
additional predeclared procedures. Since they are, as all j 

standard objects , assumed to be declared in a scope surrounding 
the user program, no conflict arises from a declaration 
redefining the same identifier within the program. The standard 
procedures get, put, read, write, reset, and rewrite were 
introduced in chapter 9. Read and write are further discussed in 
chaoter 12, 

B . Functions 

Functions are program parts (in the same sense as procedures) j 
which compute a single scalar or pointer value for use in the j 
evaluation of an expression. A function designator specifies the j 
activation of a function and consists of the identifier ( 
designating the function and a list of actual parameters. The ! 
parameters are variables, expressions, procedures, or functions 
and are substituted for the corresponding formal parameters. i 

The function declaration has the same form as the program, with i 

the exception of the fu net ion heading which has the form: ! 

<identifier > <result type> ; 

function <identifier> ( <formal parameter section> 
{ ; <formal parameter section>} ) : <result type> ; 

As in the case of procedures, the labels in the label definition 
part and all identifiers introduced in the formal parameter 
part, the constant definition part, the type definition part, 
the variable, procedure, or function declaration parts are local 
to the function declaration, which is called the s cooe of these 
objects. They are not known outside their scope. The values of 
local variables are undefined at the beginning of the statement 
part . 

The identifier specified in the function heading names the 
function. The result type must be a scalar, subrange, or pointer 
type. Within the function declaration there must be an executed 
assignment (of the result type) to the function identifier. This 
assignment ’'returns** the result of the function. 

I 
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The examples to date have only dealt with variable and value 
parameters. Also possible are procedure and function parameters. 
Both must be introduced by a special symbol; the symbol 
anscedure. signals a formal procedure parameter; the symbol 
£u.lict 10 n , a formal function parameter. The following program 
finds a zero of a function by bisection; the function is 
specified at the time of the call. 

{ program 11,6 

find zero of a function by bisection } 

program bisect (input , output); 

const eps =1e-14; 
var X ,y :real ; 

£HPC,t ion zero (f unct ion f: real; a.b: real): real; 
X ,z :real; s rboolean ; 

ilfi.qln S := f(a)<0; 
repeat x := (a+b)/2.0; 

2 f (x ); 
i£ (z <0)=s then a := x else b := x 

until abs(a-b)<eps; 
zero := x 

and. I {zero} 

begin {main} 

read (x .y ); writeln (x ,y ,z ero (s in .x ,y )) ; 
r ead (x ,y ); writ el n (x ,y ,z er o (cos ,x ,y ) ) 

arm. 

-1 .OOOOOOOOOOOOe+OO 1 .000000 000 00Oe+00 -7.105427357601e-15 
1.OOOOOOOOOOOOe+OO 2.OOOOOOOOOOOOe+OO 1.570796326795e+00 

An assignment (occurring in a function declaration) to a 
non-local variable or to a variable parameter is called a side 
affaat. Such occurrences often disguise the intent of the 
program and greatly complicate the task of verification. (Some 
implementations may even attempt to forbid side effects.) Hence, 
the use of functions producing side effects is strongly 
discouraged . 

As an example, consider program 11.7. 
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{ program 11.7 
test side effect } 

program sideffect (output); 

var a ,z : integer : 
function sneaky (x: integer): integer; 
hpain 2 :« z-x ; {side effect on z} 

sneaky :« sqr(x ) 

sxui: 
begin 

2 :« 10; a := sneaky(z); wr it eln (a .z ); 
z := 10; a :« sneaky(IO) * sneaky(z); wr it eln (a .z ); 
z :«* 10; a sneakyCz) * sneaky(IO); writeln(a,z) 

end . 

0 
0 

100 
0 

10000 -10 

The next example formulates the exponentiation algorithm of 

program 4.B as a function declaration. 
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{ program 11,8 
extend program 4.8 } 

program expon2(output); 

Y.ar P i ,spi : real; 

fun^tilUl power (x :real; y:integer): real: {y>“0} 
var z : real; 

begin z :« 1; 
wjillfi y>0 xla 
hentn 

while not odd(y) xln 
^1 n y := y jdiy, 2; X ;« sqr(x) 
&dA : 

y !“ y-1; z :» x*z 
: 

power ;« z 

£Jld; {power} 

^eain pi := 3.14159; 
writeln(2.0,7,power(2.0 .7 )); 
spi : a power(pi,2); 
writeln(pi ,2,spi ): 
wr iteln (sp i .2 .power (spi .2 )) ; 
wr iteln (p i ,4 .power (p i .4 ) ) 

&dA • 

2.000000000000e+00 
3.141590000000e+00 
9.869587728100e+00 
3.141590000000e+00 

7 1 .280000000000e+02 
2 9.869587728100e+00 
2 9.740876192266e+01 
4 9.740876192266e+01 

The appearance of the function identifier in an expression 
within the function itself implies recursive execution of the 
function . 
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{ program 11.9 
recursive formulation of gcd } 

program recursivegcd(output ); 

Van X .y .n • integer; 

function gcd(m.n: integer ):integer ; 
begin i£ n=0 t hen gcd := m 

else gcd := gcd(n,m mod n) 
£xui: {gcd} 

procedure try (a ,b rinteger); 
begin writeln (aVb ,gcd(a .b)) 
end ; 

kfi-fllD try (18.27); 
try(312.2142); 
try (61.53); 
try (98.868) 

end . 

18 27 9 
312 2142 6 

61 53 1 
98 868 14 

Function calls may occur before the function definition if there 
is a forward reference (section 11.C). 

The standard functions of Appendix A are assumed to be 
predeclared in every implementation of Pascal. Any 
implementation may feature additional predeclared functions. 

C . Remarks 

Procedure (function) calls may occur before the procedure 
(function) definition if there is a forward referenno . The 
form is as follows: (Notice that 
eventual result type are written 
reference .) 

the parameter list and 
nnlY in the forward 
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argcedurR EI(x; T); forward; 
Proceriurp p(y; j); 

begin 

Q (a) 
and: 

arocedurR Q: {parameters are not repeated} 
begin 

P(b) 

ami; 
begin 

P(a); 
Q(b) 

ami. 

Procedures and functions which are used 
other procedures and functions must have 
poly. (Consequently, it is not necessary to 
whether a parameter is called by value or by 

as parameters to 
value parameters 
test at run time 
address ,) 

component of a packed structure must not appear as an 
variable parameter. (Consequently, there is no need to 

pass addresses of partwords, and to test at run time for the 
internal representation of the actual variable.) 

File parameters must be specified as iiac-parameters 
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IMP-UT, MO OUTPUT 

The problem of communication between man and computer was j 
already mentioned in chapter 9. Both learn to underS-taoil through 
what is termed pattern r pr.nanit ion. Unfortunately, the patterns 
recognized most easily by man (dominantly those of picture and 
sound) are very different from those acceptable to a computer 
(electrical impulses). In fact, the expense of physically i 

transmitting data--implying a translation of patterns legible to | 
man into ones legible to a computer, and vice versa—can be as 
costly as the processing of the transmitted information. 
(Consequently, much research is devoted to minimizing the cost 
by “automatizing*' or “automating** more of the translation 
process.) This task of communication is called input and output 

handling (I/O). 

The human can submit his information via inPUlL dev.in&a (e.g. key 
punches, card readers, paper tapes, magnetic tapes, terminals) 
and receive his results via nutout deVics.SL (e.g. line printers, 
card and paper tape punches, terminals, visual display units). 
Common to both—and defined by each individual installation—is 
a set of legible characters (chapter 2). It is over this 
character set that Pascal defines the two standard textfile 
variables (program parameters) inP.Llt. and output, (also see [ 
chapt er 9). 

Textfiles may be accessed through the standard file procedures ! 
get and put. This can, of course be quite cumbersome as these | 
procedures are defined for single character manipulation. To 
illustrate, consider one has a natural number stored in a 
variable x and wishes to print it on the file output. Note that 
the pattern of characters denoting the decimal representation of 
the value will be quite different from that denoting the value 
written as a Roman numeral (see program 4.7). But as one is 
usually interested in decimal notation, it appears sensible to 
offer built-in standard transformation procedures that translate 
abstract numbers (from whatever computer-internal representation 
is used) into sequences of decimal digits and vice versa. 

The two standard procedures read and writB ar'e thereby extended 
to facilitate the analysis and the formation of textfiles. The 
syntax for calling these procedures is non-standard, for they 
can be used with a variable number of parameters whose types are 

not fixed. 

A. The procedure read 

Let v1,v2, ... , vn denote variables of type char, integer, or 

real, and let f denote a textfile. 

1. read(v1, ... , vn) stands for 
read(input,v1, ... , vn) 
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2, read(f,v1, ... ^ vn) stands for 
be£in read(f ,v1): ... ; read(f.vn) &nsi 

3. readln(v1.vn) stands for 
readln (input .V 1, ... ^ vn) 

4, readln(f.v1. vn) stands for 
ii£aia read(f.vl); ... ; read(f.vn); readln(f) 

The effect is that after vn is read (from the textfile f), 
the remainder of the current line is skipped. (However, the 
values of v1...vn may stretch over several lines.) 

5. If ch is a variable of type char, then ^ 
read(f.ch) stands for 

ch ft; get(f) end 

If a parameter v is of type integer (or a subrange thereof) 
or real. a sequence of characters, which represents an 
integer or a real number according to the Pascal syntax, is 
read. (Consecutive numbers must be separated by blanks or 
ends of lines .) 

examples : 

Read and process a sequence of numbers where the last value 
is immediately followed by an asterisk. Assume f to be a 
textfile. X and ch to be variables of types integer (or real) 
and char respectively. 

reset (f); 

read(f .X .ch); 
P(x) 

until c h = * * * 

Perhaps a more common situation is when one has no way of 
knowing how many data items are to be read, and there is no 
special symbol that terminates the list. Two convenient 
schemata follow. In the first, single items are processed. 

reset (f ); 
while xifli eof (f) dn 

k&ala read(f.x); skip blanks (f ) ; 
P (x ) ; 

&dA 

where skip blanks(f) stands for the statement 
(ffo' ') and. not eof (f) dn get (f) 

The second schema processes n-tuples of numbers; 
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reset (f ); 
not eof(f) da 

hRoin reacl(f,x1.x n ); skip blanks (f); 
P (x 1.X n ) : 

and 

(For the above schema to function properly, the total number 
of single items must be a multiple of n.) 

The procedure read can also be used to read from a file f whi 

is not a textfile. 
read(f *x ) 

in this case stands for 
begin x := fT ; get(f ) and 

B , The procedure write 

The procedure write appends character strings (one or more 
characters) to a textfile. Let p1.p2, ... ,pn be parameters of 
the form defined below (see 5). and let f be a textfile. Then: 

1. write(p1.pn) stands for 
write (output ,p 1, ... , pn) 

2. write(f,p1.pn) stands for 
begin wr it e (f ,p 1) ; ... I write(f,pn) find 

3. writeln(p1. ... , pn) stands for 
wr it eln (output ,p 1, ... , pn) 

4. writeln (f .p 1, ... , pn) stands for 
begin write(f,p1); ... ; write(f,pn): writeln(f) £Dd 

This has the effect of writing p1, ... , pn and then 
terminating the current line of the textfile f. 

5. Every parameter pi must be of one of the forms; 

e 
e : e 1 
e ; e 1 : e2 

where e, e1, and e2 are expressions. 

6, e is the value to be written and may be of type char, 
integer, real. Boolean, or it may be a string. In the first 
case, write(f,c) stands for 

ft :« c ; put (f ) 
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7. el—called the minimum field width—is an optional control. 
It must be a natural number and indicates the minimum number 

characters to be written. In general, the value e is 
written with e1 characters (with preceding blanks). If e1 is 
too small , more space is allocated. (Reals must be written 

with at least one preceding blank; however, this restriction 
does not apply to integer values.) If no field length is 
specified. a default value (implementation dependent) is 
assumed according to the type of the expression e. 

8, e2 called the £ra,Ction IfiQgtIl—is an optional control and 
is applicable only when e is of type real. It must be a 
natural number and specifies the number of digits to follow 
the decimal point. (The number is then said to be written in 
fixed-point notation.) If no fraction length is specified 
the value is printed in decimal floating-point form. 

^*0. If the value e is of type Boolean. then the standard 
identifier true or false is written. 

Py'ocedure write can also be used to write onto a file r 
which IS not a textfile. 

write(f ,x ) 
in this case stands for 

kgflia fT : = x; put(f) en(j 
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PASCAL 6000-3,4 

The purpose of this chapter is to introduce those features that 
are peculiar to the implementation on the Control Data 6000 
computers. The reader is warned that reliance upon any of the 
characteristics peculiar to PASCAL 6000-3.4 may render his 
programs unacceptable to other implementations of Pascal. One 
is, therefore, advised to use only features described as 
Standard Pascal in the previous chapters whenever possible, and 
certainly when writing "portable** programs. 

The topics of this chapter fall into four categories; 

A) Extensions to the language 
B) Specifications left undefined in the preceding chapters 

C) Restrictions 
D) Additional predefined procedures, functions, and types 

A, Extensions to the language Pascal 

This section defines non-standard language constructs available 
on the Pascal 6000-3.4 system. Although they may be oriented 
toward the particular environment provided by the given 
operating system, they are described and can be understood in 

machine independent terms. 

A.1 Segmented files 

A file can be regarded as being subdivided into so-called 
s Roments i .e . as a sequence of segments, each of which is 
itself a sequence. PASCAL 6000-3.4 offers a facility to declare 
a file as being segmented . and to recognize segments and their 
boundaries . Each segment of such a file is a **lQ.gical in 
CDC SCOPE terminology. 

declaration: 
<file type> seamentBil Ills. SiL <type> 

an example: 
T file aJL char ; 

The predicate function 

eos (x ) returns the value true when the file x is 
positioned at the end of a segment, otherwise 

false . 

The following two standard procedures are introduced: 
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putseg(x) must be called when the generation of a segment of 
the file x has been completed, and 

oetseg(x) is called in order to initiate the reading of the 
next segment of the file x. It assigns to the 
buffer variable the first component of that 
next segment. If no next segment exists, eof(x) 
becomes true; if a next segment exists but is 
empty , then eos (x ) becomes true and xf is 
undefined. Subsequent calls of pet fx ) will either 
step on to the next component or, if it does not 
exist, cause eos (x ) to become true. 

Get(x) must 
■ggf (x ) always 

not be called if either eos (x ) or eof(x) is true; 
imp lies eos (x ) . 

The advantages of a segmented file lie in the possibility of 
PPsitioning the reading or writing head (relatively) quickly to 

file. For the purposes of reading and 
e)writing a segmented file, the standard procedures getseg and 

rewrite are extended to accept two arguments. 

getseg(x,n) initiates the reading of the nth segment 
counting from the iiurrent position of the file. 
n>0 implies counting segments in the forward 
direction; n<0 means counting them backwards; 
and n=0 indicates the current segment. Note: 
getseg(x , 1 ) is equivalent to getseg(x). 

rewrite(x,n) initiates the (re)writing of x at the beginning 
of the nth segment counting from the current 
position. Note: rewrite(x,1) is nfit equivalent 
to rewrite(x). The latter causes initiation of 
(re)writing at the very beginning of the entire 
file . 

Since Tiles are organized for sequential (forward) processing 
ne should not expect getseg and rewrite to be as efficient for 

n<«0 as they are for n>0. 

following two program schemes 
statements W, R, and S, show the 
writing and reading of a segmented file. 

, with the parametric 
operations of sequential 

Writing a segmented file x: 

rewrite(x ); 

££0eat {generate a segment} 
{generate a component} 

W(xt); put(x) 
unlLll P : 
putseg (x ) 

until q 
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Note; this schema will never generate an empty file nor an empty 
segment . 

Reading a segmented file x: 

reset (x ) : 
while noi. eof(x) iIq. 
begin {process a segment} 

not. eos (x ) iia 
b^nin {process a component} 

R (x t ); get (x ) 

s.dA : 
S ; getseg(x ) 

SJld 

The next example shows a procedure that reads a segmented 
textfile f and copies the first n lines of each segment onto the 

file output • 

procedure list; 

V.ail i .s : integer ; 
hRain s 0; reset(f); 

while oglL eof (f ) slU 
begin s :=s+1; i ;= 0; 

writeln(' segment',s); 
while not eos (f ) anil (i <n ) jda 
begin i := i+1; {copy a line} 

while not eo1n (f ) dn 
begin writefft h get(f) {next character} 

fiiul; 
writeln; readln(f) {next line} 

£.nA: 
getseg(f) {next segment} 

S.D.S1 

The standard procedures read and writs, can also be applied to 

segmented files. 

A .2 External procedures 

PASCAL 6000-3.4 provides a facility to access 
nrnnedures i .e . procedures (functions) that exist outside the 
user program and have been separately compiled. This enables the 
Pascal programmer to access program libraries. The declaration 
of such a procedure consists of a procedure heading followed by 
the word '‘extern** or “Fortran”. 
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B, Specifications left undefined in the preceding chapters 

B .1 The program heading and external files 

A PASCAL file variable is implemented as a file in the CDC 
operating system. Local files are allocated on disc store or in 
the Extended Core Store (ECS). Storage is allocated when they 
are generated and automatically released when the block to which 
they are local is terminated. 

Files that exist outside the program (i.e. before or after 
program execution) may be made available to the program if they 
are specified as actual aaramet ers in the program call statement 
(EXECUTE) of the control card record. They are called external 

and are substituted for the forma 1 parameters specified in 
the EHogram Jiaadinn . The heading has the following form: 

PHEiaiiani <identifier> ( <program parameter> 
{ . <program parameter>} ) ; 

where a program parameter is either: 

<file identifier> -or- <file identifier> * 

The pare amet ers are formal fil e ident 
declared as fi le variables in the main 
same way as actual local file var iables . 

Files denot ed by the formal par ameters . 
somewhat spe cial s- tatus . The foil owing ru 

1, The pro gram ! leading rnu S-L contain 

be 

output , 

2. Contrary to all other external files, the two formal file 
identifiers Input and nutaut must not be defined in a 
declaration, because their declaration is automatically 
assumed to be : 

y.ail input, output: text; 

3. The procedures reset and rewrite have no effect if applied 
to the actual files INPUT and OUTPUT. 

example : 

P (output X . y ); 

var X ,y : text; 

If an actual parameter in the EXECUTE statement of the control 
card record is left empty, the corresponding formal parameter in 
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the program heading is then assumed as the actual logical file 
name”. For example, when calling a program with the heading: 

orQoram P(output,f,g); 

then EXECUTE,(,X,) is equivalent to EXECUTE ,P(OUTPUT,X,G), The ; 
full specification of the file parameters is recommended because i 

reliance on default values often leads to mistakes that could 

easily have been avoided. 

B.2 Representation of files 

In the case of external files it is important to know the 
representation of files chosen by the PASCAL compiler. Every 
component of a PASCAL-6000 file occupies an integral number of 
60-bit words, with the exception of files with component type 
rhar ftpxtfi Tpr ). In this case PASCAL files use the ’’standard” 
representation imposed by CDC*s text file conventions: 10 
characters are packed into each word, implying that the I 
procedures put and get include packing and unpacking operations | 
when applied to textfiles. The end of a line is represented by | 
at least 12 right-adjusted zero-bits in a word. Files 
originating from card decks follow the same general textfile 
conventions. Note that the operating system removes most (but 
not necessary all) trailing blanks when reading cards. Hence, 
such files do not necessarily consist of 80-character ’’card 

images”. 

Files that are not segmented are written as a single ’’logical 
record” (in SCOPE terminology). While reading an unsegmented 
external file, end-of-record marks are ignored [for an 
exception, see point 3 below]. In segmented files, each segment 
corresponds to a ’’logical record . There is no provision to 

specify a ”record level”. 

Use of external files 

1, If an external file is to be read (written), then in the 
case of non—segmented files, reading (writing) must be 
initiated by the statement 

reset(x) ( rewrite(x) ) 

and in the case of segmented files by 

reset(x) ( rewrite(x) ) or 
getseg(x,n) ( rewrite(x,n) ) 

(This statement is automatically implied for the files 
denoted by the formal parameters input and and must 
not be specified by the programmer.) 

2. Every external file is automatically opened by a call of 
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the OPE routine of the operating system. If this opening is 
to be restricted to the read function——e.g• in the case of a 
permanent file without write permission—then this has to be 
indicated by an asterisk following the file parameter in the 
program heading. The asterisk itself constitutes no 
protection against writing on the file. 

example : 
program testdata(output, data*); 

ifian data: file of real; 
r : real; 

r := datat ; get(data ) 

If the actual file name INPUT is substituted corresponding 
to a formal program parameter, say f, then f is the current 
single logical record of the file INPUT . 

B .3 The standard types 

INTEGER 

The standard identifier maxint is defined as 

cansJL maxint = 281474976710655; { = 2**48 - 1 } 

The reader is cautioned, however, that the CDC computer provides 
no indication of overflow. It is, therefore, the programmer's 
responsibility to provide a check whenever this might occur. 

Actually, the machine is capable of storing integers up to an 
absolute value of 2**59, but then only the operations of 
addition (+), subtraction (-), taking the absolute value, 
multiplication and division by powers of 2 (implemented as 
shifts), and comparisons are correctly executed in this range 
(as long as no overflow occurs). In particular, one cannot even 
print an integer value i when abs (i ) >maxint . This does, however, 
allow the following test: 

JL£ abs (i ) > maxint then write(* too big') 

real 

The type llfia-L is defined according to CDC 6000 floating point 
format. Provided is a mantissa with 48 bits, corresponding to 14 
decimal digits. The maximum absolute magnitude is 10**322. 
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CHAR 

A value of type char is an element in the character set provided 
by the particular installation. The following 3 versions exist: 

1) The CDC Scientific 64-character set 
2) The CDC Scientific 63-character set 
3) The CDC ASCII 64-character set 

Table 13.q lists the available characters and indicates their 
ordering: Note : the CDC specification implies an ordering of the 
ASCII characters which differs from the International Standard 
(ISO) ! 
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CDC Scientific Character Set with 64 elements 

0 1 2 3 4 5 6 7 0 9 

0 : A B C D E F G H I 

10 J K L M 1 N 0 P Q R 5 

20 T U V w ; K Y Z 0 1 2 

30 3 4 5 6 7 0 9 + - « 

40 / { ) $ = t , = [ 
50 ] % / r* V A t 1 < > 

60 < 2 * 

Comments: 

- 0 not used in 63-character set version 

- 51 i in the 63-character set version 

- 40 t at ETH 

- 53 I at ETH 

- 57 ! at ETH 

ASCII Character Set with CDC s ordering 

0 1 2 3 4 5 6 7 0 9 

0 : A B C D E F G H I 

10 J K L M N 0 P Q R 5 

20 T U V W X Y Z 0 1 2 

30 3 4 5 6 7 0 9 + - * 

40 / ( ) $ = f • [ 

50 J % II 1 & 1 ? < > 

60 @ \ 

Figure 13. a CDC character sets 
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Based upon the above character sets^ the following characters 
are accepted by the Pascal 6000-3.4 compiler as synonyms for the 
standard language symbols given in the left column: 

Standard Pascal CDC scientific ASCII 

not -» 
and A L 
or V 

<> 
<« < 
>. 7 

Figure 13.b: Alternative representation of 
standard symbols 

B.4 The standard procedure ’’write*' 

If no minimum field length parameter is specified, the following 
default values are assumed. 

type default 

10 
22 ( where the exponent is always 

expressed in the form: E±999 ) 

10 
1 

length of the string 
10 

The end of each line in a textfile f must be explicitly 
indicated by writeln(f), where writeln(output ) may be written 
simply as writeln. If a textfile is to be sent to a printer, no 
line may contain more than 136 characters. The first character 
of each line is interpreted by the printer as a control 
character and is not printed. The following characters are 

interpreted to mean 

V no line feed (overprinting) 
blank single spacing 
'0' double spacing 
'1' skip to top of next page before printing 

The procedure writeln(x) is used to mark the end of a line on 
file X, The conventions of the CDC operating system regarding 
textfile representation are such that this procedure is forced 
to emit some extra blanks under certain circumstances. Hence, 

int eger 
real 

Boolean 
char 
a string 
alfa (see D,1) 
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upon reading, a textfile may contain blanks at the end of lines 
that were never explicitly written. (Sorry about this!) 

C, Restrictions 

1. The word segment ed is reserved. 

2. The base type of a set must be either 
a) a scalar with at most 59 elements (or a subrange thereof) 

or 

b) a subrange with a minimum element greater than or equal 
to zero, and a maximum element less than or equal to 58, 
or 

c) a subrange of the type char with the maximum element less 
than or equal to the value chr(58). 

3. Standard (built-in) procedures or functions are not accepted 
as actual parameters. For example, in order to run program 
11.6 in PASCAL 6000-3.4, one would have to write auxiliary 
functions as follows: 

fyjlctiQn sine(x: real): real; 
begin sine :« sin(x) endi 

f.g.npt jgn zer o (f u notion f: real; a,b: real): real; 
begin ... endi 

begin 
read(x,y); writeln(x,y,zero(sine,x,y)); 

&nsL. 

4. It is not possible to construct a file of files; however, 
records and arrays with files as components are allowed. 

5. Strings may be compared only if their length is less than 10 
or a multiple of 10. 

D. Additional predefined types, procedures, and functions 

D.1 Additional predefined types 

The type alfa is predefined by: 

jy-ge alfa - packed array T 1 .. 10) char; 

(Hence, a value of type alfa is representable in exactly one 
word.) The constants of this type are strings of exactly 10 
charact ers. 
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Applicable 
comp aris on, 
test order 
v/alues may 

on operands of type alfa are assignment 
where = and <> test equality and <, <*, 
accordihg to the underlying character 

be printed by the procedure write. 

( : = ) and 
>«, and > 
s et, Alfa 

I program 13.1 
alfa values } 

program egalfa(output) ; 

var n1 ,n2; alfa; 
begin write(' names; '); 

n1 ;a 'raymond n2 debby 
if n2 < n1 then writeln(n2,n1) 

els e writeln(n1,n2) 
end ■ 

names ; debby raymond 

Note: It is not possible to read alfa values directly; instead, I 
the following is suggested; j 

var buf; array F 1 . , 1 0 1 char; 
a; alfa; i; integer; 

for i ;= 1 JtJa 10 lln read (bu f [ i ] ) ; 
pack(buf,1,a) {accomplishes read(a)} 

D.2 Additional predefined procedures and functions 

Procedures 

date(a) assigns the current date to the alfa variable a. | 

halt terminates the execution of the program and i 
issues a post-mortem dump. 

linelimit(f,x) f is a textfile and x is an integer expression. 
The effect is to cause the program to be 
terminated, if more than x lines are asked to be 
written on file f, 

message(x) the string x is written into the dayfile. 
(Hence, x should contain at most 40 characters.) 

time(a) assigns the current time to the alfa variable a. 

puts eg gets eg and the extensions to rewrite and reset are 
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discussed in 

Functions 

card (x ) 

clock 

expo(x) 

undefined (x ) 

eos(x ) 

trunc(x ,n) 

sect ion 13.A,1, 

equals the cardinality of the set x (i.e. the 
number of elements contained in the set x.) 

a function, without parameters, yielding an 
integer value equal to the central processor time, 
expressed in milliseconds, already used by the 
job , 

yields the integer valued exponent of the 
floating-point representation of the real value x; 
expo(x) = entier(log2(abs(x))), 

a Boolean function. Its value is true when the 
real value x is *'out of range*’ or *‘indef init e", 
otherwise false [7]./ 

(discussed in section 13.A,1) 

*s trunc(x*y), where n is an integer expression, 
and y *= 2**n • 
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How t□ Use t he PASCAL 6000-3 .4 System 

A. Control statements (for SCOPE 3.4) 

A Pascal 
compiler 
which yie 
code . In 
compiler 
precompile 
provided 
loaded co 
appropriat 
control 
abbreviate 
a single s 
system , a 
installati 

job usually consi 
is loaded, The 
Ids a listing of 
the third step 
on secondary s 

d routines for 
on a "program libr 
de is executed . 
e orders to the 
atements , The exac 
d forms (loading a 
tatement ) depend e 
nd must therefor 
on , 

sts of four steps. First, the Pascal 
second step is the compilation step, 
the source program and the compiled 
the compiled code, deposited by the 

tore, is loaded and linked with 
input and output handling, which are 
ary" file. Finally, the compiled and 

These four steps are initiated by 
operating system in the form of 

t form of these statements and their 
nd execution can often be ordered by 
ntirely upon the available operating 
e be specified by the particular 

The actual file parameters , which correspond to the formal file 
identifiers listed in the program heading, must be specified in 
the statement initiating execution of the compiled program 
(usually an EXECUTE command). 

The compiler itself is also a Pascal program. Its heading is 

program Pascal(input,output,lgo); 

The first formal parameter denotes the file representing the 
source program to be compiled; the second, the program listing; 
and the third, the compiled "binary", relocatable code. 

The CDC operating systems allow the omission of actual 
parameters in the control statements. If an actual file name is 
omitted, the Pascal convention on program parameters specifies 
that the formal file identifier be used as the actual file name. 
Hence, the standard files INPUT, OUTPUT, and LGO are 
automatically assumed as the default files for the source file, 
the listing, and the relocatable binary code respectively. Note, 
however, that these roles may be assumed by other files when 
their names are entered as actual parameters. Note: actual 
parameters must consist of at most 7 characters. 

B . Compiler options 

The compiler may be instructed to 
certain options; in particular, it may 
omit run-time test instructions. Compi 
as comments and are designated as su 
first character of the comment : 

generate code acc 
be requested to 

ler directives ar 
ch by a $-charact 

ording to 
insert or 
e written 
er as the 
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{$<option sequence> <any comment> } 

Example: {$T +,P + } 

The option sequence is a sequence of instructions separated by 
commas. Each instruction consists of a letter, designating the 
option, followed either by a plus (+) if the option is to be 
activated or a minus (-) if the option is to be passivated, or 
by a digit (see X and B below). 

The following options are presently available: 

T include run-time tests that check 

a) all array indexing operations to insure that the index 
lies within the specified array bounds . 

b) all assignments to variables of subrange types to make 
certain that the assigned value lies within the specified 
range • 

c) all divisions to insure against zero divisors 
d) all automatic integer to real conversions to assure that 

the converted value satisfies: 
abs (i ) <■ maxint 

e) all case statements to insure that the case selector 
corresponds to one of the specified case labels, 

default * T + 

P generate the code necessary to write a complete Post-Mortem 
Dump (see section 14,C,2) in the case of a run-time error, 

default « P + 

X if a digit n (0 <» n <*» 6) follows the X, pass the first n 
parameter descriptors in the registers XO to X(n-1) (the 
first in XO, the second in XI, etc.). Otherwise pass them in 
the locations with the addresses B6+3 to B6+n+2. 

n>0 reduces the size of the code produced by the compiler and 
probably also slightly improves the code. However, the 
programmer must be aware that with n>0, the compiler cannot 
use the registers XO to X min(n-1,i-2) for the passing of the 
ith parameter. It is therefore possible that for n>0, the 
compiler gives the message ’’running out of registers”; where 
for n«0. it would not, 

default » X4 

E allows the programmer to control the symbols for the entry 
Points to the object code modules (procedures and functions) 
that he declares in his program. The following conventions 
hold : 

— Modules declared as ’’extern” or ”fortran” get an entry 
point name equal to the procedure identifier cut to the 
first seven characters . 
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— Local modules get an entry point name depending on the 
value of the E-option (at the moment of analyzing the 
module name ) : 

E- A unique symbol is generated by the compiler 
E+ The first seven characters of the module name are 

taken• 

Whenever the cut module name is taken (E+ and **extern** or 
**f ortran**) , it is the programmers responsibility to avoid the 
occurrence of duplicate entry point symbols. 

default « E- 

L controls the listing of the program text, 

default « L+ 

U allows the user to restrict the number of relevant characters j 
in every source line to 72. The remainder of the line is | 
treated as a comment. With U- the number of relevant i 
characters is 120. The rest of the line is then treated as a : 
comment. 

default « U- 

B used to specify a lower limit for the size of file buffers. 
If after the B a digit d (1<sd<*9) occurs, the buffer size i 

S, computed by the compiler, is guaranteed to be S > 128*d * 
words . 

default « B1 

As the compiler instructions may be written anywhere in the 
program, it is possible to activate the options selectively over 
specific parts of the program. 

C. Error messages 

C.1 Compiler 

The compiler indicates a detected error by an arrow, pointing to 
the relevant place in the text, followed by a number, which 
corresponds to the messages in Appendix E, 

C.2 Run-time (Post-Mortem Dump) 

When the compiler option P is turned on (i.e. P+), the compiler 
generates code that can be used to print a readable **dump'* in 
the case that a run-time error occurs. The dump includes the 
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following information: 

a) the cause of the trap and where it occurred 

b) a description of each of the procedures (functions) that 
is activated at the time of the trap. These appear in the 
reverse order of their calls and consist of: 
1) the name of the procedure 
2) the location of its call 
3) a list of the names and values of the local variables 

and parameters. 

c) the values of the global variables in the main program. 

Only variables and parameters of the types integer, real. 
Boolean, and char are listed. Pointers are either *'nil’* or have an 
octal value (address). For other scalar variables, the ordinal 
number of their current value is printed. When, for any one 
procedure, the option P is turned off (P-), then only the 
procedure name and the location of its call appear in the dump. 

In the case of recursive procedure calls, only the last (most 
recent) three occurrences of each procedure are listed. 
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Appendix A 

Standard ProCuBdures and Functions 

File handling procedures 

put (f ) appends the value of the buffer variable fT to the 
file f, and is applicable only if prior to 
execution, eof(f) is true, eof(f) remains true, and 
fT becomes undefined. 

get(f) advances the current file position to the next 
component, and assigns the value of this component 
to the buffer variable fT . If no next component 
exists, then eof(f) becomes true, and the value of 
fT is undefined. Applicable only if eof(f) is false 
prior to its execution. 

res et(f) resets the current file position to its beginning 
for the purpose of reading, i.e, assigns to the 
buffer variable fT the value of the first element of 
f, eof(f) becomes false if f is not empty; 
otherwise, fT is undefined and eof(f) remains true. 

rewrit e(f) replaces the current value of f with the empty file, 
eof(f) becomes true, and a new file may be written. 

page(f) instructs the printer to skip to the top of a new 
page before printing the next line of the textfile 
f. 

read, readln , write, writeln are discussed in chapter 12. 

Dynamic allocation procedures 

new(p ) allocates a new variable v and assigns the 
pointer reference of v to the pointer 
variable p. If the type of v is a record 
type with variants, the form 

new(p ,t 1,.. ,,tn) can be used to allocate a variable of the 
variant with tag field values t1.,,tn. The 
tag field values must be listed 
contiguously and in the order of their 
declaration. They must not be changed 
during execution. 

dispo se(p ) indicates that storage occupied by the 
variable pT is no longer needed. The 
tag field values must be identical to those 
used when allocating the variable. 
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Data transfer procedures 

pack(a,iTz) If a is an array variable of type 
array Tm, .n] ia£ T 

and z is a variable of type 
packed ar.ra^[u . of. T 

where n-m >* v-u, then this is equivalent to 

for j :«utiivdiiz[j] :*a[j-u+i] 

and 
unpack(z,a,i) is equivalent to 

for j :« u tsi v iio. a[j-u+i] :» z[j] 

(In both cases, j denotes an auxiliary variable 
not occuring elsewhere in the program.) 

Arithmetic functions 

abs (x) computes the absolute value of x. The type of the result 
is the same as that of 
or real. 

sqr (x ) comput es x*x. The typ e o 
of X, which must be e it h 

sin (x ) for the following, t he 
integer . The type of the 

cos (x ) 
ar ct an( x) 
exp(x ) 
In (x ) (natural . logarithm) 
sqrt (x ) (square root ) 

X, which must be either integer 

f the result is the same as that 
er integer or real. 

type of X must be either real or 
result is always real. 

Predicates (Boolean functions) 

odd(x) the type of x must be integer; the result is true if x 
is odd, otherwise false. 

eoln(f) returns the value true when, while reading the textfile 
f, the end of the current line is reached; otherwise, 
fals e. 

eof(f) returns the value true when, while reading the file f, 
the **end-of-file** is reached; otherwise, false. 
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Transfer functions 

trunc(x ) X must be of type real; the result is the greatest 
integer less than or equal to x for x>=0, and the 
least integer greater or equal to x for x<0, 

round(x ) X must be of type real; the result, of type integer, 
is the value x rounded. 
That is, round(x) = tru nc (x+0.5 ) , for x ^ 0 

trunc (x-0.5 ) , for x < 0 

or d (x ) the ordinal number of the argument x in the set of 
values defined by the type of x. 

chr (x ) X must be of type integer, and the result is the 
character whose ordinal number is x (if it exists). 

Further standard functions 

succ(x ) X is of any scalar type (except real), and the result 
is the successor value of x (if it exists). 

pred(x ) X is of any scalar type (except real), and the result 
is the predecessor value of x (if it exists). 
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Appendix B 
Summary af. 

operator jLy.o S qL result 

assignment any type except 
file types 

arithmetic: 
+ (u nary ) identity integer or real same as 
- (unary ) sign inversion operand 

+ addition integer or real integer 

* 
subtraction 
multiplication 

or real 

div integer division integer integer 
/ real division integer or real real 

masl modulus integer Integer 

relational: 
= equality scalar , string , 

<> inequality set , or pointer 

< 
> 

less than 
greater than 

scalar or string 

Boolean 

<= less or equal 
-or - 
set inclusion 

scalar or string 

s et 
> = greater or equal 

-or - 
set inclusion 

scalar or string 

set 

in set membership first operand is 
any scalar , the 
second is its set 
type 

logical : 

nni negation 

nn 
ojisL 

dis junction 
conjunction 

Boolean Boolean 

set : 
+ union 

set difference 
intersection 

any set type T T 
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Appendix C 

IaiLl,es 

A, Table of standard identifiers 

Constants: 
false, true, maxint 

Types : 
integer. Boolean, real, char, text 

Program parameters; 
input, output 

Fu net ions ; 
abs, arctan, chr, cos, eof, eoln, exp. In, odd, 
nrd, pred, round, sin, sqr, sqrt, succ, trunc 

Procedures: 
get, new , pack, page. put, read , readli 
rewrit e, unpack, write. writ eln 

Table of word-delimit ers (reserved w or ds ) 

and end nil set 

arx-AY fllR not then 
begin for nf in 
cas e funstlfln nn type 

cnna,.t, got Q pacKsil wntll 
div if pronediir-s var 

xIq in proaram while 
dnw nto label record with 

els e mod repeat 

C, Non-standard, predefined identifiers in PASCAL 6000-3.4 

Types : 
alfa 

Fu notions: 
card, clock, eos, expo, undefined 

Procedures: 
date, getseg, halt, linelimit, message, putseg, time 
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Appendix D 
Syntax 

Baiikus.j=N^ii Eniim (nN'F ) 

Note: the following symbols are meta-symbols belonging to the 
BNF formalism, and not symbols of the language Pascal. 

The curly brackets denote possible repetition of the enclosed 
symbols zero or more times. In general, 

A : iDf 

is a short form for the purely recursive rule: 

A ::« <empty> I AB 

<program heading> ::= aronram <identifier> ( <file identifiBr> 
{. <file identifier> } ); 

<file identifier> ::= <identifier> 

<identifier> ::* <letter> {<letter or digit>} 

<letter or digit> ::= <letter> I <digit> 

<block> ::= <label declaration part> <constant definition part> 
<type definition part> <variable declaration part> 
<procedure and function declaration part> 
<statement part> 

<label declaration part> ::« <empty> | 
label <label> { , <label>} ; 

<label> ::= <unsigned integer> 

<constant definition part> ::* <empty> | 
const <constant definition> { ; <constant definition>} ; 

<constant definition> : : =* <identifier> = <constant> 

<constant> ::« <unsigned number> | <sign> <unsigned number> | 
<constant identifier> | <sign> <constant identifier> | 
<string> 

<unsigned number> ::« <unsigned integer> | <unsigned real> 
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<unsigned integer> <digit> {<digit>} 

<unsigned real> <unsigned integer> , <digit> {<digit>} | 
<unsigned integer> . <digit> {<digit>} E <scale factor> | 
<unsigned integer> E <scale factor> 

<scale factor> <unsigned integer> | <sign> <unsigned integer> 

<sign >::= + ! - 

<constant identifier> <identifier> 

<string> ' <character> {<character>} 

<type definition part> <empty> | 
type <type definition> { ; <type definition>} ; 

<type definition> ::= <identifier> = <type> 

<type> ::= <simple type> | <structured type> | <pointer type> 

<simple type> <scalar type> ! <subrange type> | 
<type identifier> 

<scalar type> ( <identifier> {. <identifier>} ) 

oubrange type> ::= <constant> .. <constant> 

<type identifier> <identifier> 

<structured type> <unpacked structured type> I 
packed <unpacked structured type> 

<unpacked structured type> <array type> | <record type> | 
<set type> I <file type> 

<array type> ::= array [ <index type> {. <index type>} ] 
<component type> 

<index type> <simple type> 

<CQmponent type> ::= <type> 

<record type> ::= record <field list> end 

<field list> <fixed part> | <fixed part> ; <variant part> I 
<yariant part> 

<fixed part> <record section> {; <record section>} 

<record section> <fisld identifier> { , <field identifier>} : 
<type> I <err,pty> 

<variant part> case <tag field> <type identifier> 
<variant> { ; <variant>} 
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<tag field> <fielcl iclentifier> : | <empty> 

<variant> <case label list> : ( <field list> ) | <empty> 

<case label list> <case label> <case label>) 

<case label> <constant> 

<set type> ::« set of <base type> 

<base type> ::= <simple type> 

<file type> ::«= file of <type> 

<pointer type> t <type identifier> I 

<variable declaration part> <empty> | | 
i/iail <variable declaration> {; <variable declarat ion >) ; I 

<variable declaration> <identifier> {. <identifier>} : <type>; 

<procedure and function declaration part> 
{<procedure or function declaration> ;} 

<procedure or function declaration> <procedure declaration> | 
<function declaration> 

<procedure declaration> <procedure heading> <block> 

<procedure heading> procedure <identifier> ; | 
procedure <identifier> ( <formal parameter section> 
{ ; <formal parameter section>} ) ; 

<formal parameter section> <parameter group> | 
V.ail <parameter group > | function <parameter group> | 
procedure <identifier> { , <identifier>} 

<parameter group> <identifier> {. <identifier>} : 
<type identifier> 

<function declaration> <function heading> <block> 

<function heading> function <identifier> : <result type> ; | 
function <identifier> ( <formal parameter section> 
{ ; <formal parameter section>} ) : <result type> ; 

<result type> 

<statement part> 

<type identifier> 

:= <compound statement 

! 

> 

<statement> <unlabelled statement> | 
<label> : <unlabelled statement> 

<unlabelled statement> : : «* <simple statement> | 
<structured statement> 

<simple statement> <assignment statement> | 
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<procedure statement> | <go to statement> | 
<empty statement> 

ossignment statement> <variable> := <expression> | 
<functiQn identifier> := <expression> 

<variable> <entire variable> | <component variable> I 
<referenced variable> 

<entire variable> <variable identifier> 

<variable identifier> <identifier> 

<component variable> ::= <indexed \/ariable> | <field designator> | 
<file buffer> 

<indexed variable> <array variable> [ <expression> 
{ . <expression>} ] 

<array variable> <variable> 

<field designator> ::= <record variable> • <field identifier> 

<record variable> <variable> 

<field identifier> :<identifier> 

<file buffer> <file variable> t 

<file variable> ::= <variable> 

<referenced variable> ::= <pointer variable> t 

<pointer variable> <variable> 

<expression> <simple expression> I oimple expression> 
<relational operator> <simple expression> 

<relational □peratQr> = I <> I < I <® I >- I > I in 

<simple expressiGn> <term> I <sign> <term> | 
<simple expression> <adding operator> <term> 

<adding □perator> ::= + | - | nn 

<term> <factor> | <term> <multiplying operator> <factor> 

<mult ip lying □perator> : : = j / \ div I mod | and 

<factor> <variable> I <unsigned constant> I ( <expression> ) | 
<function designator> | <set> I not <factor> 

<unsigned constant> <unsigned number> I <string> | 
<constant identifier> | nil 

<function designator> ::= <function identifier> I 
<function identifier> ( <actual parameter> 
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{. octual parameter>} ) 

<fun ct io n id entifier> <ident ifier > 

<set > : : = [ <element list> ] 

<ele me nt lis t > ::* <element > { , <element > } I <empty> 

<ele me nt > : : = <expression> | <ex press ion > .. <expression> 

<pro ce du re s tatement> <proce dure ide ntifier> | 
<procedure identifier> ( <actual parameter> 
{ , <actual parameter>} ) 

<procedure identifier> <identifier> 

octual parameter> <expression> | <variable> | 
<procedure identifier> | <function identifier> 

<go to statement> onto <label> 

<empty statement> <empty> 

<empty> : : = 

<structured statement> <compQund statement> I 
<conditional statement> | <repetitive statement> I 
<with statement> 

<conipound statement> begin <statement> { ; <statement>} qnd 

<conditional statement> <if statement> | <case statement> 

<if statement> <expression> then <statement> | 
i£ <expression> then <statement> else <statement> 

<case statement> Haas <expressiDn> Qf, <case list element> 
{ ; <case list element>} end 

<case list element> <case label list> : <statement> | 
<empty> 

<case label list> ::= <case label> {, <case label> } 

<repetitive statement> : : =* <while statement> ! <repeat statement} I 
<fQr statement> 

<while statement> while <expression> jda <statement> 

<repeat statement> reo eat <statement> {; <statement>} 
u ntil <expression> 

<for statement> for <control variable> := <for 
<statement > 

<for list> <initial value> i.a <final value> | 
<initial value> downt□ <final value> 

list > 
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<control variable> <identifier> 

<initial value> <expression> 

<final value> <expression> 

<with statement> with <record variable list> iia <statement> 

<record variable list> <record variable> { . <record variable>} 
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Appendix E 
Error Number Summary 

1; error in simple type 
2: identifier expected 
3: 'program' expected 
4: ') ' expected 
5: ': ' expected 
6: illegal symbol 
7: error in parameter list 
Qs 'of' expected 
9: ' ( ' expected 

10: error in type 
11: ' [ ' expected 
12: ' expected 
13: 'end ' expected 
14: *; * expected 
15: integer expected 
16: '=' expected 
17: 'begin' expected 
10: error in declaration part 
19: error in field-list 
20: ' , ' expect ed 
21: '*' expected 

50: error in constant 
51: ' : = ' expected 
52: 'then' expected 
53: 'until' expected 
54: 'do' expect ed 
55: 'to '/'downto ' expected 
56: 'if' expected 
57; 'file' expected 
58: error in factor 
59: error in variable 

101: identifier declared twice 
102: low bound exceeds highbound 
103: identifier is not of appropriate class 
104: identifier not declared 
105: sign not allowed 
106: number expected 
107: incompatible subrange types 
108: file not allowed here 
109: type must not be real 
110: tagfield type must be scalar or subrange 
111: incompatible with tagfield type 
112: index type must not be real 
113: index type must be scalar or subrange 
114: base type must not be real 
115: base type must be scalar or subrange 
116: error in type of standard procedure parameter 
117: unsatisfied forward reference 
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118: forward reference type identifier in variable declaration 
119: forward declared; repetition of parameter list not allowed s 
120: function result type must be scalar^ subrange or pointer 
121: file value parameter not allowed | 
122: forward declared function; repetition of result type not | 

a 11 ow e d | 
123: missing result type in function declaration 
124: F-format for real only 
125: error in type of standard function parameter | 
126: number of parameters does not agree with declaration I 
127: illegal parameter substitution 
128: result type of parameter function does not agree with i 

declaration ^ 
129: type conflict of operands j 
130: expression is not of set type 
131: tests on equality allowed only 
132: strict inclusion not allowed 
133: file comparison not allowed 
134: illegal type of operand(s) 
135: type of operand must be Boolean 
136: set element type must be scalar nr subrange 
137: set element types not compatible 
138: type of variable is not array 
139: index type is not compatible with declaration 
140: type of variable is not record 
141: type of variable must be file or pointer 
142: illegal parameter substitution 
143: illegal type of loop control variable 
144: illegal type of expression 
145: type conflict 
146: assignment of files not allowed 
147: label type incompatible with selecting expression 
148: subrange bounds must be scalar 
149: index type must not be integer 
150: assignment to standard function is not allowed 
151: assignment to formal function is not allowed 
152: no such field in this record 
153: type error in read 
154: actual parameter must be a variable 
155: control variable must not be declared on intermediate level 
156: multidefined case label 
157: too many cases in case statement 
158: missing corresponding variant declaration 
159: real or string tagfields not allowed , 
160: previous declaration was not forward 
161: again forward declared i 
162: parameter size must be constant j 
163: missing variant in declaration 
164: substitution of standard proc/func not allowed 
165: multidefined label 
166: multideclared label 
167: undeclared label 
168: undefined label 
169: error in base set 
170: value parameter expected 
171: standard file was redeclared 
172: undeclared external file 
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173: Fortran procedure or function expected 
174: Pascal procedure or function expected 
175: missing file **input ** in program heading 
176: missing file ‘'output “ in program heading 
177: assignment to function identifier not allowed here 
17R: multidefined record variant 
179: X-opt of actual proc/func does not match formal declaration 

180: control variable must not be formal 

181: constant part of address out of range 

201: error in real constant: digit expected 
202: string constant must not exceed source line 
203: integer constant exceeds range 
204: B or 9 in octal number 
205: zero string not allowed 
206: integer part of real constant exceeds range 

250 

251 
252 
253 
254 

255 
256 

257 
258 

259 
260 

t oo ma ny 
too many 
t 00 many 
pro( cedur( 
t oo many 
too ma ny 
t oo ma ny 
t oo ma ny 
too many 
express i( 
too man y 

nested scopes of identifiers 
nested procedures and/or functions 
forward references of procedure entries 
too long 

long constants in this procedure 
errors on this source line 
external references 
ext ernals 
local files 
n too complicated 
exit labels 

300: di vision by zero 
301: no case provided for this value 
302: index expression out of bounds 
303: value to be assigned is out of bounds 
304; element expression out of range 

398: implementation restriction 
399: variable dimension arrays not implemented 
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Appendix F 

Prjaaramminn Examples 

{procedures to read and write real numbers used by the 
Standard Procedures read(f,x) and write(f,x:n) } 

procedure rdr (y.ail fs text; var x: real); 
{ read real numbers in 'free format' } 
nnnat t48 = 281474976710656; 

limit = 56294995342131; 
z = 27; { ord('O') } 
limi S5 322; { maximum exponent } 
lim2 = -292; { minimum exponent } 

type posint = 0,,323; 
var ch : char; y: real; a ,i ,e : integer; 

s ,ss : boolean; { signs } 

function ten(e: posint): real; 
y.ail i! integer; t; real; 

1, 

reoept if odd ( e ) iiion 
££££ i Of 

0 : t ■t t * 1 .Oel; 
1 ; t rr t 1.0e2; 
2: t a: t * 1 .Oe4; 
3: t s t * 1 .0e8; 
4: t s t * 1.0e16; 
5: t s t * 1.0e32; 
6: t SB t * 1.0e64; 
7: t S t * 1.0e128 
8: t B t * 1 .0e256 

£0X1 ; 
e : ’ = e diy 2; i :* i 

until e = 
ten := t 

£11X1 

10**e . 0<e<322 } 

iiaflln 
{skip leading blanks} 

while ft*' ' get(f); 

ch :* ft ; 
if. ch = '-' then 

begin s := true; get(f); ch :* ft 
end else 
begin s : * false; 

if ch * '+' then 
begin get(f); ch :* ft 

£ml 
£nxi ; 
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IL not. (ch in [ 'o ' . . *9 * ] ) t hen 
begin message('♦♦digit expected'); halt; 
nnxi; 
a :« 0 ; e ; « 0; 

eat i£ a < limit t.hen a :» 10♦a +ord(ch)-2 

else e : = e + 1; 
get (f); ch := ft 

until nnt(ch in [ ); 
i£ ch = ', ' then 

tfijain { read fraction } get(f); ch :« ft; 
while ch in [ jln 
bficrin i£ a < limit t hen 

begin a :* 10^a + ord(ch)-z; e !« e-1 
end ; 

get(f); ch := ft 

nnt : 
if ch « 'e ' t hen 

tfiflig { read scale factor } get(f); ch ft; 
i ;= 0; 
if. ch » then 
begin ss :« true; get(f); ch :* ft 
end else 

tnain ss :*= false; if ch = ' + ' then 
tnain get(f); ch := ft 
nnt 

nnt ; 

if ch in I 'o'..'9'] then 
bfiflin i :* ord(ch)-z; get(f); ch := f t ; 

iiiliin ch in [ 'o'..'9'] dn 
tnnin if i < limit then i :» lO^i -i- ord(ch) 

get (f ) ; ch :« ft 
ant 

end else 

bfifliQ message(' digit expected'); halt 
ant ; 

if ss then e := e-i else e := e +i; 
ant : 
if e < lim2 then 

begin a := 0; e := 0 

ant alaa 
if e > 1im 1 t hen 
begin message('♦♦number too large'); halt end : 
{ 0 < a < 2^*49 } 
if a >s t 48 t hen y := ((a +1) diu 2) *2.0 

else y :® a ; 
if s tten y : = -y ; 
if e < 0 t hen x ; = y /t en (-e ) else 
if e <> 0 then x : = y ♦t en (e ) els e x : =* y ; 

and; 
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nrnr.Rriur e wrp (war f: text; x: real; n: integer); I 
{write real number x with n characters in decimal flt.pt, forma' 
{the following constants are determined by the cdc flt.pt, formj 
cnnst t48 = 281474976710656; {» 2**48} i 

z = 27; { ord('0") } 
type posint = 0,,323; 
var c ,d,e,e0,e1 ,e2,i: integer; 

funotion ten(e; posint): real; 
var i: integer; treal; 

begin i :* 0; t :** 1,0; 
reoeat if. odd(e) then 

CHS e i xif 
0 
1 
2 

3 
4 
5 
6 
7 
8 

end 

1,0e1; 
1,0e2; 
1,0e4; 
1,0e8; 
1,0e16; 
1,0e32; 
1,0e64; 
1,0e128; 
1 .0e256 

e e di\/ 2; i i + 1 
until e * 0; 
ten :* t 

end { ten } ; 

10**e, 0<e<322 } 

begin { at least 10 characters needed: b+9,9e+999 } 
if undefined(x) then 
begin rspsat fT :* ' put(f); n n-1 

Mnfil n <* 1; 
fT := *u'; put(f ) 

end else 
if X * 0 then 
fagain repeat fT := ' put(f); n :« n-1 

until n <« 1; 
fT := "0": put(f) 

end els e 

benia 
if n <* 10 then n := 3 els e n :« n-7; 
repeat fT :* ' put(f); n :« n-1 
until n <* 15 ; 
{ 1 < n <= 15T number of digits to be printed } 
begin { test sign, then obtain exponent } 

if X < 0 then 
begin fT :« put(f); X ;ss-x 
end else begin fT := * * put(f) end: 

e : = expo(x); 
if e >a 0 then 

begin e := e*77 div 256 +1; x :* x/ten(e); 
if X >« 1,0 then 

begin x := x/10,0; e := e+1 
end 

end else 
begin e ;* (e + 1)*77 div 256; x ten(-e)*x; 

if X <0,1 then 
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iiSfflin X 10,0*x; 
end 

and ; 
{ 0,1 <« X < 1,0 } 

CflSS n il£. { rounding } 
2: X := x+0,5e-2; 
3: X ;= x+0,5e-3; 
4: X := x+0,5e-4; 
5: X ;= x+0,5e-5; 
6: X := x+0,5e-6; 
7: X ;= x+0,5e-7; 
8; X :s x+0,5e-8; 

9: X :« x + 0..5e-9; 
10: X : x + 0,5e-10 ; 
11; X ;* x+0,5e-11 ; 
12 ; X ; = x + 0,5e-12; 
13; X ;= x+0,5e-13; 
14: X ;* x+0,5e-14; 
13; X ;- x+U.3e-13 

end ! 

i£ X >=s 1,0 than 

keflln X :=x*0,1;e ;= 
BJid ; 

c ;= tru nc(x,48); 
c ;= 10*c; d ;= c div t48; 

:« chr(d+z); put(f); 
f T := \ : put(f ); 
LdJL i : * 2 in n jla 
beain c ;= (c - d*t48) * 10; 

fT : chr(d+z); put(f) 
end ; 

fT :« 'e'; put(f); e ;* e- 
i£ e < 0 thnn 

hsnin fT put(f); 
and els e begin fT ;= '+'; 

el ;* e * 205 diu 2048; e2 : 
e0 ;=: el * 205 div/ 2048; el 
fT ;* chr(e0+z); put(f); 
fT chr(e1+z); put(f); 
fT ;= chr(e2+z); put(f) 

end 
end 

end {wre} ; 

e + 1 ; 

d ; = c div/ t48; 

•1 ; 

e : = -e ; 
put(f ) end ; 

* e - 10*e1; 
:= el - 10*e0; 
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1. Introduction 

The development of the 
aims. The first is 
teach programming as 
fundamental concepts 
language. The second 
language which are 
available computers. 

language Pascal is based on two principal 
to make available a language suitable to 

a systematic discipline based on certain 
clearly and naturally reflected by the 
is to develop implementations of this 

both reliable and efficient on presently 

The desire for a new language for the purpose of teaching 
programming is due to my dissatisfaction with the presently used 
major languages whose features and constructs too often cannot 
be explained logically and convincingly and which too often defy 
systematic reasoning. Along with this dissatisfaction goes my 
conviction that the language in which the student is taught to 
express his ideas profoundly influences his habits of thought 
and invention, and that the disorder governing these languages 
directly imposes itself onto the programming style of the 
students . 

There is of course plenty of reason to be cautious with the 
introduction of yet another programming language, and the 
objection against teaching programming in a language which is 
not widely used and accepted has undoubtedly some 
justification, at least based on short term commercial 
reasoning. However, the choice of a language for teaching based 
on its widespread acceptance and availability, together with the 
fact that the language most widely taught is thereafter going to 
be the one most widely used, forms the safest recipe for 
stagnation in a subject of such profound pedagogical influence, 
I consider it therefore well worth-while to make an effort to 
break this vicious circle. 

Of course a new language should not be developed just for the 
sake of novelty; existing languages should be used as a basis 
for development wherever they meet the criteria mentioned and do 
not impede a systematic structure. In that sense Algol 60 was 
used as a basis for Pascal, since it meets the demands with 
respect to teaching to a much higher degree than any other 
standard language. Thus the principles of structuring, and in 
fact the form of expressions, are copied from Algol 60. It was, 
however not deemed appropriate to adopt Algol 60 as a subset of 
Pascal; certain construction principles .particularly those of 
declarations, would have been incompatible with those allowing a 
natural and convenient representation of the additional features 
of Pascal . 

The main extensions relative to Algol 60 lie in the domain of 
data structuring facilities, since their lack in Algol 60 was 
considered as the prime cause for its relatively narrow range of 
applicability. The introduction of record and file structures 
should make it possible to solve commercial type problems with 
Pascal, or at least to employ it successfully to demonstrate 
Such problems in a programming course. 



2, Summary of the language 

An algorithm or computer program consists of two essential] 
parts, a description of actions which are to be performed, and a 
description of the data . which are manipulated by these actions.] 
Actions are described by so-called statements . and data are 
described by so-called declarations and definitions . 

The data are represented by values of variables . Every variable 
occurring in a statement must be introduced by a variable 
declaration which associates an identifier and a data type with[ 
that variable. The data tvoe essentially defines the set ofj 
values which may be assumed by that variable. A data type may inj 
Pascal be either directly described in the variable declaration, 
or it may be referenced by a type identifier, in which case this 
identifier must be described by an explicit tvoe definition - 

The basic data types are the scalar types . Their definition 
Indicates an ordered set of values, i .e. introduces identifiers^ 
standing for each value in the set. Apart from the definable 
scalar types, there exist four standard basic types ! Boolean 
integer . char - and real , Except for the type Boolean, their! 
values are not denoted by identifiers, but instead by numbers 
and quotations respectively. These are syntactically distinctj 
from identifiers. The set of values of type char is the 
character set available on a particular installation. 

A type may also be defined as a subrange of a scalar type byj 
indicating the smallest and the largest value of the subrange. [ 

Structured types are defined by describing the types of their 
components and by indicating a structuring method . The various 
structuring methods differ in the selection mechanism serving to 
select the components of a variable of the structured type. In 
Pascal, there are four basic structuring methods available: 
array structure, record structure, set structure, and file 
structure. 

In an array structure . all components are of the same type. A 
component is selected by an array selector, or comoutahle index . 
whose type is indicated in the array type definition and which 
must be scalar. It is usually a programmer-defined scalar type, 
or a subrange of the type integer. Given a value of the index 
type, an array selector yields a value of the component type. 
Every array variable can therefore be regarded as a mapping of 
the index type onto the component type. The time needed for a 
selection does not depend on the value of the selector (index). 
The array structure is therefore called a random-acces s 

In a record structure . the components (called fields ) are not 
necessarily of the same type. In order that the type of a 
selected component be evident from the program text (without 
executing the program), a record selector is not a computable 
value, but instead is an identifier uniquely denoting the 
component to be selected. These component identifiers are 
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declared in the record type definition. Again, 
to access a selected component does not depend 
and the record is therefore also a random-access 

the time needed 
on the selector, 

s tructure . 

A record type may be specified as consisting of several 
ygriants . This implies that different variables, although said 
to be f the same type, may assume structures which differ in a 
certain manner. The difference may consist of a different number 
and different types of components. The variant which is assumed 
by the current value of a record variable may be indicated by a 
component field which is common to all variants and is called 
the iafl—flfild » Usually, the part common to all variants will 
consist of several components, including the tag field. 

A afil-airucture defines the set of values which is the powerset 
of its base type, i.e. the set of all subsets of values of the 
base type. The base type must be a scalar type, and will usually 
be a programmer-defined scalar type or a subrange of the type 
integer . 

A file stcucture is a aeguence of components of the same type. A 
natural ordering of the components is defined through the 
sequence. At any instance, only one component is directly 
accessible. The other components are made accessible by 
progressing sequentially through the file. A file is generated 
by sequentially appending components at its end. Consequently, 
the file type definition does not determine the number of 
components . 

Variables declared in explicit declarations are called statin - 
The declaration associates an identifier with the variable which 
is used to refer to the variable. In contrast , variables may be 
generated by an executable statement. Such a dynamic generation 
yields a so-called pointer ( a substitute for an explicit 
identifier) which subsequently serves to refer to the variable. 
This pointer may be assigned to other variables, namely 
variables of type pointer. Every pointer variable may assume 
values pointing to variables of the same type T only, and it is 
said to be hound to this type T. It may, however, also assume 
the value nil, which points to no variable. Because pointer 
variables may also occur as components of structured variables , 
which are themselves dynamically generated, the use of pointers 
permits the representation of finite graphs in full generality. 

The most fundamental statement is the assignment statement. It 
specifies that a newly computed value be assigned to a variable 
(or components of a variable). The value is obtained by 
evaluating an expression . Expressions consist of variables, 
constants, sets, operators and functions operating on the 
denoted quantities and producing new values • Variables , 
constants, and functions are either declared in the program or 
are standard entities. Pascal defines a fixed set of operators, 
each of which can be regarded as describing a mapping from the 
operand types into the result type. The set of operators is 
subdivided into groups of 

1. arithmetic operators of addition. subtraction, sign 
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inversion. multiplication, division, and computing the 
remainder , 

of negation, union (or), and conjunction 

of union, intersection, and set difference. 

of equality, inequality, ordering, set I 
inclusion. The results of relational • membership and set 

operations are of type Boolean . 

T he 
procedure (see be 
the components or 
which specify seq 
their components 
specified by the 
execution by the 
repeated execution 
and the for 
execution of a s 
expression, and t 
among many stateme 
for statement is 
beforehand . and t 
otherwise • 

causes the execution of the designated 
low). Assignment and procedure statements are 

uential, selective, or repeated execution of; 
Sequential execution of statements is i 

compound statement . conditional or selective 
if 5.fa.fanig.nt and the , and 

by the repeat statement . the while statement . 
The if statement serves to make the 

tatement dependent on the value of a Boolean 
he case statement allows for the selection 
nts according to the value of a selector. The 
used when the number of iterations is knowi 

he repeat and while statements are used 

nt can be give n a name (identifier ) . a nd be refer enced 
t hat identifi er . T he statement is then call ed a 

and its dec la rat ion a orocedurR dec laratjnn . S uch a 
m ma y addi t i onally contain a s et of var ia ble 
ns , type d efiniti ons and further proc edure 

ns . T he varia bl es , typ es and procedur es thus dec lar ed 

eferen ced only within the procedure itself, an d are 
calle d local t o the pr ocedure . Their identifiers have 

declaration 
declarations , 
declarations . 
can be 
therefore 
significance only wit 
procedure declaration 
identifiers . Since p 

has 

the pr ogram text which constitutes t he 
id whi ch is called the SCOPe of these 
idur es may be d eclared local to oth er 
nes ted . Entities which are declared in 
lOt loc al to some proced ure , are call ed 

a fix ed number of para meters , each of 
1 th e p rocedure b y an id entifier call ed 
Ipon a n activat ion of the procedu re 

the main program, i 
oloba1 . A procedure 
which is denoted w 
the forma 1 p aramet e 
statement , an actual quantity has to be indicated for each 
parameter which can be referenced from within the procedure 
through the formal parameter. This quantity is called the actual 

There are four 
variable parameters , 
In the first case, 
which is evaluated 

a local variable to 
evaluation is assigned before the execution of the procedure (or 
function). In the case of a variable parameter, the actual 
parameter is a variable and the formal parameter stands for this 
variable. Possible indices are evaluated before execution of the 

(or function). In the case of procedure or function 

parameters , 
parameters . 
expression 
represents 

kinds of parameters: value 
procedure and function 

the actual parameter is an 
once. The formal parameter 
which the result of this 

procedure 
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parameters, the actual parameter is a procedure or function 
identifier . 

are declared analogously to procedures . The only 
difference lies in the fact that a function yields a result 
which is confined to a scalar or pointer type and must be 
specified in the function declaration* Functions may therefore 
be used as constituents of expressions. In order to eliminate 
side-effects, assignments to non-local variables should be 
avoided within function declarations • 

3, Notation, terminology, and vocabulary 

According to traditional Backus—Naur form, syntactic constructs 
are denoted by English words enclosed between the angular 

I brackets < and > * These words also describe the nature or 
j meaning of the construct. and are used in the accompanying 
j description of semantics . Possible repetition of a construct is 

indicated by enclosing the construct within metabrackets { and 
}. The symbol <empty> denotes the null sequence of symbols. 

The basic vocabulary of Pascal consists of basic symbols 
classified into letters, digits, and special symbols. 

<letter> A|B|C|D|E|F|GIH11|J|K|L|M|N|0|P|Q|R|S|T|U|V I 
W|X|Y|2|a|b|c|dje|fig|h|i|j|k|l|m|njoipiq|rj 
s It |u|v|w|x|y|z 

<digit> ; :« 0| 1| 2\ 3| 4| 5| 6| 7| 8| 9 
<special symbol> 

+ I - I * I / I = I <> I < I > I <= I >- I ( I ) I 
[ I ] I { I } I I . I . I : I ! I ' I t I Jliit I 
mad I all I la I an I aad I aal I 1£ I then | else | 
aaaa I a£ I repeat I until I while | I for | la I 
dpwntp I begin | mml I with | goto | const | uar | 

I ^zaa I array I record | set j file I function | 
procedure | label | aacked | oroaram 

The construct 
{ <any sequence of symbols not containing **} ”> } 

may be inserted between any two identifiers, numbers (cf. 4), or 
special symbols . It is called a oomment and may be removed from 
the program text without altering its meaning. The symbols { and 
} do not occur otherwise in the language, and when appearing in 
syntactic descriptions they are meta-symbols like | and . 
The symbol pairrs (* and *) are used as synonyms for { and } . 

4. Identifiers, Numbers, and Strings 

Identifiers serve to denote constants, types, variables, 
procedures and functions. Their association must be unique 
within their scope of validity, i.e. within the procedure or 
function in which they are declared (cf. 10 and 11). 
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<iclentifier> <letter>{ <letter or digit>} 
<letter or digit> <letter> I <digit> 

The usual decimal notation is used for numbers . which are the 
constants of the data types integer and zl&qJl (see 6.1.2.) , The 
letter E preceding the scale factor is pronounced as **times 10 
to the power of**. 

<digit sequence> <digit>{<digit>} 
<unsigned integer> ::« <digit sequence> 
<unsigned real> <unsigned integer>.<digit sequence> | 

<unsigned integer>.<digit sequence>E<scale factor> | 
<unsigned integer> E <scale factor> 

<unsigned number> <unsigned integer> I <unsigned real> 
<scale factor> <unsigned integer> | 

<sign><unsigned integer> 
<sign> ;:a + I - 

Examples: 
1 100 0.1 5E-3 87.35E+8 

Sequences of characters enclosed by quote marks are called 
strings . Strings consisting of a single character are the 
constants of the standard type char (see 6.1.2). Strings 
consisting of n (>1) enclosed characters are the constants of 
the types (see 6.2.1) 

packed array [ 1 . .n] char 

Note: If the string is to contain a quote mark, then this quote 
mark is to be written twice. 

<string> *<character>{<character>}' 

Examples: 
•••• 

"PASCAL* * "THIS IS A STRING" 

5. Constant definitions 

A constant definition introduces an identifier as a synonym to a 
constant . 

<con3tant identifier> <identifier> 
<constant> :<unsigned number> I <signxunsigned number> 1 

<constant identifier> | <signxconstant identifier> | 
<s t r i n g > 

<constant definition> <identifier> * <constant> 
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6. Data type definitions 

A data type determines the set of values which variables of that 
type may assume and associates an identifier with the type. 

<type> <simple type> | <structured type> | <pointer typo 
<type definition> <identifier> * <type> 

6.1, simple types 

<simple type> <scalar type> | <subrange type> | 
<type identifier> 

<type identifier> <identifier> 

6,1.1 . 
A scalar type defines an ordered set of values by enumeration of 
the identifiers which denote these values. 

<scalar type> :(<identifier> {.<identifier>} ) 

Examples : 

(red. orange, yellow, green, blue) 
(club, diamond, heart, spade) 

(Monday. Tuesday. Wednesday. Thursday, Friday, 
Saturday. Sunday) 

Functions applying to all scalar types (except real) are : 

succ the succeeding value (in the enumeration) 
pred the preceding value (in the enumeration) 

6.1.2, standard tvoes 

The following types are standard in Pascal: 

integer 

real 

Boolean 

char 

The values are a subset of the whole numbers 
defined by individual implementations. Its values 
are the integers (see 4). 

Its values are a subset of the real numbers 
depending on the particular implementation. The 
values are denoted by real numbers (see 4). 

Its values are the truth values denoted by the 
identifiers true and false. 

Its values are a set of characters determined by 
particular implementations. They are denoted by 
the characters themselves enclosed within quotes. 
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6.1, 

A type may be defined as a subrange of 
indication of the least and the largest 
The first constant specifies the lower 
greater than the upper bound. 

another scalar type by 
value in the subrange, 
bound, and must not be 

<subrange type> :<constant> .. <constant> 

Examples: 1. , 100 
-10 .. +10 
Monday .. Friday 

A structured type is characterised by the type(s) of its 
components and by its structuring method. Moreover, a structured 
type definition may contain an indication of the preferred data 
representation. If a definition is prefixed with the symbol 
nacked e this has in general no effect on the meaning of a 
program (for a restriction see 9.1.2e); but it is a hint to the 
compiler that storage should be economized even at the price of 
some loss in efficiency of access, and even if this may expand 
the code necessary for expressing access to components of the 

structure •*' 

<structured type> <unpacked structured type> I 
DankRd <unpacked structured type> 

<unpacked structured type> ::= <array type> | 
<record type> I <set type> 1 <file type> 

6.2.1. ^rraY.-tYB.£a 

An array type is a structure consisting of a fixed number of 
components which are all of the same type, called the ^QfDDQnsn^ 
type . The elements of the array are designated by indices, 
values belonging to the so-called ttYQ£ • Ibe array type 
definition specifies the component type as well as the index 

I type. I 

<array type> ts® array [<index type> { ,<index type>}] 
<component type> 

<index type> <simple type> 
<component type> <type> 

If n index types are specified, the array type is callec 
n-dimensional . and a component is designated by n indices. 

Examples; array [1..100] of real 
array [ 1 . . 10,1 . .20] nf 0..99 
array [Boolean] color 

j 
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record type is a structure consisting of a fixed number of 
components, possibly of different types. The record type 
definition specifies for each component, called a field its 
type and an identifier which denotes it. The scope of these 
so-called fifild lilfintifiers is the record definition itself, and 
they are also accessible within a field designator (cf. 7.2) 
referring to a record variable of this type. 

A record type may have several variants , in which case a certain 
field may be designated as the JLafl fifild. whose value indicates 
which variant is assumed by the record variable at a given time. 
Each variant structure is identified by a case label which is a 
constant of the type of the tag field. 

<record type> record <field list> end 

<field llst> <fixed part> | <fixed part>;<variant part> | 
<variant part> 

<fixed part> <record section> { ;<record section>} 
<record section> 

<field ldentifier>{ ,<field identifier>} : <type> | <empty> 
<variant part> £aaa <tag field> <type identifier> ji£ 

<varlant> { ;<variant>} 
<variant> <case label list> : (<field list>) | <empty> 
<case label list> <case label> { ,<case label>} 
<case label> ::« <constant> 
<tag field> <identifier> : | <empty> 

Examples: record davz 1..31; 
month : 1 . .12; 
year: integer 

Il£Ci3rd name, firstname: alfa ; 
age: 0..99; 
married: Boolean 

£Ild. 

CfiCJind X ,y : real ; 
area: real; 

i^ase s : shape qZ 
triangle: (side: real; 

inclination, anglel, angle2; angle); 
rectangle: (side1, side2 real; 

skew, angle3: angle); 
circle: (diameter: real) 

snsL 

6.2.3. B_et types 

A set type defines the range of values which is the powerset of 
its so-called liasfi txafi. . Base types must not be structured 
types. Operators applicable to all set types are; 
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+ union 
- set difference 
* intersection 

In membership 

The set difference x-y is defined as the set of all elements of 

X which are not members of y . 

<set type> : set nil <base type> 
<base type> <simple type> 

6.2, 
A file type definition specifies 
sequence of components which are 
number of components, called the 
fixed by the file type definition, 

called empty . 

a structure consisting of a 
all of the same type. The 
Innoth of the file, is not 

A file with 0 components is 

<file type> filfi nf <type> 
I 

Files with component type char are called tBAt-tilnS.. and are a 
'special case insofar as the component range of values must be 
considered as extended by a marker denoting the end of a line. 
This marker allows textfiles to be substructured into lines. The 
type text is a standard type predeclared as 

i;voe text = file a£ char 

6.3. 

Variables which are declared in a program (see 7.) are 
accessible by their identifier. They exist during the entire 
execution process of the procedure (scope) to which the variable 
is local, and these variables are therefore called atatin (or 
statically allocated^ In contrast, variables may also be 
generated dynamically, i.e . without any correlation to the 
structure of the program. These dynamic variables are generated 
by the standard procedure (see 10.1.2.); since they do not 
occur in an explicit variable declaration. they cannot be 
referred to by a name. Instead, access is achieved via a 
so-called oninter value which is provided upon generation of the 
dynamic variable. A pointer type thus consists of an unbounded 
set of values pointing to elements of the same type. No 
operations are defined on pointers except the assignment and the 

test for equality. 

The pointer value nil belongs to every pointer type; it points 

to no element at all. 

<pointer type> t<type identifier> 
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Examples of type definitions: 

color s (red, yellow, green, blue) 
sex = (male, female ) 
t ext e file xi£ char 
s hape ss (triangle, rectangle, circle) 
card « array [1..80] xif char 
alfa s Hacked array [1..10] jq£ char 
complex * nacprd re,im: real £j2d 
p erson s record name, firstname: alfa; 

age: int eger ; 
married :Boolean ; 
father, child, sibling: fperson; 

gase s : sex xi£ 
male: (enlisted, bold: Boolean); 
female: (pregnant: Boolean; 

size: array[ 1.»3] n£ integer) 
ami 

7. Declarations and denotations of variables 

Variable declarations consist of a list of identifiers denoting 
the new variables, followed by their type. 

<variable declaration> ::« <identifier>{,<identifier>} : <type> 

Every declaration of a file variable f with components of type T 
implies the additional declaration of a so-called buffer 
variable of type T . This buffer variable is denoted by ff and 
serves to append components to the file during generation, and 
to access the file during inspection (see 7.2.3. and 10.1.1.). 

Examples: 
X ,y ,2 : real 
u,v: complex 
i,j: integer 
k: 0..9 
P .q : Boolean 
operator: (plus, minus, times) 
a: arravT 0. .631 ja£ real 
b: flUrazE color ,Boo lean] complex 
c : color 
f • £11 e ja£ char 
hue1,hue2: aet of color 
p 1 ,p 2: fperson 

Denotations of variables either designate an entire variable a 
component of a variable, or a variable referenced by a pointer 
(see 6.3). Variables occurring in examples in subsequent 
chapters are assumed to be declared as indicated above. 

<variable> ::= <entire variable> | <component variable> I 
<referenced variable> 
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7.1 , 

An entire variable is denoted by its identifier. 

<entire variable> <variable identifier> 
<variable identifier> <identifier> 

7.2. 

A component of a variable is denoted by the variable followed by 
a selector specifying the component. The form of the selector 
depends on the structuring type of the variable. 

<component variable> <indexed variable> I 
<field designator> I <file buffer> 

7.2.1 

A component of an n-dimensional array variable is denoted by the 
variable followed by n index expressions . 

<indexed variable> 
<array variable> [<expression> {,<expression>}J 

<array variable> !:= <variable> 

The types of the index expressions must correspond with the 
index types declared in the definition of the array type. 

Examples : 
a[ 12] 

a[i+j] 
b[red.true] 

7.2.2. 
A component of a record variable is denoted by the record 
variable followed by the field identifier of the component. 

<field designator> <record variable> .<field identifier> 

<record variable> <variable> 
<field identifier> <identifier> 

Examples : 
u .re 
b [red .true] .im 
p 2f ,3 ize 
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7.2.3. Ells, iiyffers 

At any time, only the one component determined by the current 
file position (read/write head) is directly accessible. This 
component is called the current file component and is 
represented by the file's buffer \/ariahle . 

<file buffer> ;<file variable>t 
<file v/ariable> <variable> 

7.3. B.ef:£renced variables 

<referenced variable> <pointer variable>t 
<pointer variable> <variable> 

If p is a pointer variable which is bound to a type T , p 
denotes that variable and its pointer value, whereas pt denotes 
the variable of type T referenced by p. 

Examples : 
p It .father 
p1t .sibling! .child 

8. Expressions 

Expressions are constructs denoting rules of computation for 
obtaining values of variables and generating new values by the 
application of operators. Expressions consist of operators and 
operands, 1 .e . variables, constants, and functions. 

The rules of composition specify operator precedences according 
to four classes of operators. The operator not has the highest 
precedence, followed by the so-called multiplying operators, 
then the so-called adding operators, and finally, with the 
lowest precedence, the relational operators. Sequences cf 
operators of the same precedence are executed from left to 
right. The rules of precedence are reflected by the following 
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<unsigned cQnstant> <unsigned number> I <string> | 
<constant identifier> | nil 

<factor> :i- <variable> | <unsigned constant> I 
<function designator> | <set> I (<expression>) I 
not <factor> 

<set> [ <element list> ] 
<element list> <element> { ,<element>} I <empty> 
<element> <expression> | <expression> . . <expression> 
<term> <factor> | <term><muIt iplying operator><factor> 
<simple expression> <term> I 

<simple expression> <adding operator><term> I 
<sign > 

<expression> <simple expression> | 
<simple expressionxrelat ional operat or ><s imp le expression> 

Expressions which are members of a set must all be of the same 
type, which is the base type of the set, [] denotes the empty 
set, and [x..y] denotes the set of all values in the interval 
X . . .y . 

Examples : 

F actors: X 
15 
(X +y +z ) 
s in (x +y ) 
[red ,c ,green] 
[ 1.5,10..19,23] 

nai. p 

Terms : X *y 

i/(1-i) 
p an q 
(x <=y ) anil (y < 

Simple expressions: X -i-y 
-X 
hue 1 + hue2 
i + 1 

Expressions : X = 1.5 

P <“q 
(i<j) * (j<k) 
c in hue 1 

8.1. 

If both operands of the arithmetic operators of addition, 
subtraction and multiplication are of type integer (or a 
subrange thereof), then the result is of type integer. If one of 
the operands is of type real, then the result is also of type 
real. 

8.1.1 
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The operator noi. denotes negation of its Boolean operand, 

<multiplying operator> | / | div | mod ! and 

I operator I operation 1 type of operands 1 type of result| 

I 
I * 

I 
I multiplication I real , integer 

1 1 
1 real, integer | 

I 
I 

I set intersection 
I 

1 any set type T 1 T 1 

I / 
I 

1 division 
1 

I real . integer 
1 1 
1 real | 
1 1 

I ili^ 
1 
1 division with 1 integer 

I I 
I integer | 

I 
I 

1 truncation 
1 1 1 

I 
I mod 
I 

1 
1 modulus 
1 

1 integer 
1 1 
1 integer | 

1 and 
1 

1 logical ”and*’ 
1 

1 Boolean 
I I 
1 Boolean I 

1 1 

8.1.3. Aiijllng operators 

<adding operator> : : =* + 1 - 1 nn 

I operator I operation I type of operands 1 type of result| 

I + 
1 
1 addition I integer, real 

1 
integer .real | 

1 set union 
1 

1 any set type T T 1 
1 

j - 
1 
1 subtraction 1 integer , real 

1 
integer . real 1 

1 set difference 
1 

1 any set type T T 1 
1 

I nn 
I 
1 logical “or" 
1 

1 Boolean 
1 

Boolean j 

1 

When used as operators with one operand only, 
inversion, and + denotes the identity operation. 

- denotes sign 

8.1 .4. 

<relational operator> = I <> In 
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I operator I type of operands result 

= <> 

< > 

<= > = 

any scalar or subrange type B oolean 

In any scalar or subrange type 
and its set type respectively 

Boolean 

Notice that all scalar types define ordered sets of values. 

The operators <>, <=. >® stand for unequal, less or equal .and 
greater or equal respectively. 
The operators <= and >= may also be used for comparing values of 
set type, and then denote set inclusion. 
If p and q are Boolean expressions, p = q denotes their 
equivalence. and p <= q denotes implication of q by p . (Note 

that false < true) 

The relational operators = <> <<«>>« may also be used to 
compare (packed) arrays with components of type char (strings), 
and then denote alphabetical ordering according to the collating 
sequence of the underlying set of characters. 

A function designator specifies the activation of a function. It 
consists of the identifier designating the function and a list 
of actual parameters . The parameters are variables . expressions. 
procedures. and functions. and are substituted for the 
corresponding formal parameters (cf. 9.1.2., 10. and 11). 

<function designator> <function identifier> | 
<function identifier>(<actual parameter>{ .<actual parameter>}) 

<function identifier> <identifier> 

Examples: Sum(a.lOO) 
GCD (147.k) 
s in (x +y ) 
eof (f ) 
ord (ft ) 

9. Statements 

Statements 

referenced 

denote 
. They 
by goto 

algorithmic actions. 
may be prefixed by 
statements . 

and are said to be 
a label which can be 
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<s tat ement >!! =i<u nla bell ed statement> | 
<labGl>;<unlabelled statement> 

<unlabelled statement> <simple statement> | 

<structured statement> 
<label> <unsigned integer> 

9.1. simple statements 

A simple statement is a statement of which no part constitutes 
another statement. The empty statement consists of no symbols 
and denotes no action. 

<simple statement> ::= <assignment statement> | 
<procedure statement> | <goto statement> j 
<empty statement> 

<empty statement> <empty> 

The assignment statement serves to replace the current value of 
a variable by a new value specified as an expression . 

<assignment statement> <variable> <expression> | 
<function identifier> := <expression> 

The variable (or the function) and the expression must be of 
identical type. Vi^ith the following exceptions being permitted: 

1. the type of the variable is real. and the type 
expression is integer or a subrange thereof. 

2. the type of the expression is a subrange of the type 
variable, or vice-versa. 

Examples: x :« y+z 
p :* (1<ssi) and. (i < 10 0 ) 
i :* sqr (k ) - (i*j) 

huel :« [ blue .succ (c )] 

9.1.2. Eracedure statements 

A procedure statement serves to execute the procedure denoted by 
the procedure identifier. The procedure statement may contain a 
list of antuai narameters which are substituted in place of 
their corresponding formal oarameters defined in the procedure 
declaration (cf. 10). The correspondence is established by the 
positions of the parameters in the lists of actual and formal 
Parameters respectively. There exist four kinds of parameters: 
so-called value parameters. variable parameters. procedure 
parameters (the actual parameter is a procedure identifier), and 
function parameters (the actual parameter is a function 
identifier). 

In the case of a yal^e parameter . the actual parameter must be 
an expression (of which a variable is a simple case). The 

of t he 

of the 
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corresponding formal parameter represents a local variable of 
the called procedure, and the current value of the expression is 
initially assigned to this variable. In the case of a ^ar.iallla 
Dnrameter . the actual parameter must be a variable, and the 
corresponding formal parameter represents this actual variable 
during the entire execution of the procedure. If this variable 
is a component of an array, its index is evaluated when the 
procedure is called, A variable parameter must be used whenever 
the parameter represents a result of the procedure. 

Components of a packed structure must not appear as actual 
variable parameters . 

<procedure statement> <procedure identifier> | 
<procedure identifier> (<actual parameter> 

{ ,<actual parameter>} ) 
<procedure identifier> <identifier> 
<actual parameter> <expression> | <variable> I 

<procedure identifier> I <function identifier> 

Examples: next 
Transpose(a.n,m) 
Bisect (fct,-1.0,4-1.0,x) 

9.1.3. 

A goto statement serves to indicate 
should continue at another part of the 
the place of the label. 

that further processing 
program text, namely at 

<goto statement> goto <label> 

The following restrictions hold concerning the applicability of 
labels : 

1 , The scope of a label 
defined , it is therefor 
procedure , 

2. Every label mus t be spec 
heading of t he procedu 
statement , 

the procedure within which it is 
not possible to jump into a 

ed in a label declaration in the 
in which the label marks a 

9.2. 

Structured statements are constructs composed of other 
statements which have to be executed either in sequence 
(compound statement), conditionally (conditional statements), or 
repeatedly (repetitive statements). 

<structured statement> <compound statement> | 
<conditional statement> 1 <repetitive statement> I 
<with statement> 
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9.2.1. Compound statements 

The compound statement specifies that its component statements 
are to be executed in the same sequence as they are written. The 
symbols begin and find, act as statement brackets • 

<compound statement> begin <statement> { ;<statement>} end 

Example; begin z := x ; x ;= y; y := z end 

A conditional statement selects for execution a single one of 
its component statements . 

<conditional statement> 
<if statement> 1 <case statement> 

9.2.2.1. 
The if statement specifies that a statement 
a certain condition (Boolean expression) 
false, then either no statement is to 
statement following the symbol else is to be 

be executed only if 
is true . If it is 

be executed, or the 
executed . 

<if statement> <expression> then <statement> | 
jL£ <expression> then <statement> else <statement> 

The expression between the symbols i£ and then must be of type 
Boolean • 

Note : 
The syntactic ambiguity arising from the construct 

i£ <express ion-1> then i£ <expression-2> then <statement-1> 
else <statement-2> 

is resolved by interpreting the construct as equivalent to 

i£ <expression-1> t hen 
begin i£ <expression-2> then <statement-1> else <statement-2> 
find 

Examples : 
i£ x < 1.5 then z :» x +y else z : * 1.5 
i£ P 1 <> nil then p 1 := p If .father 

9.2.2.2, 
The case statement consists of an expression (the selector) and 
a list of statements, each being labelled by a constant of the 
type of the selector. It specifies that the one statement be 
executed whose label is equal to the current value of the 
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selector • 

<case statement> case <expression> a£ 
<case list element> { :<case list element>} find. 

<case list element> JS* <case label list> : <statement> I 
<empty > 

<case label list> <case label> { ,<case label> } 

Examples : 
case operator case i 

plus : X : = X +y ; 1 ; X ; » sin (x ) 

minus : X : ® X -y ; 2: X := cos (x ) 

times : X x*y 3: X :» exp (x ) 

S.dA 4: X := In(x ) 
end 

9.2.3. Ri 

Repetitive statements specify that certain statements are to be 
executed repeatedly. If the number of repetitions is known 
beforehand, i.e. before the repetitions are started, the for 
statement is the appropriate construct to express this 
situation; otherwise the while or repeat statement should be 

used . 

<repetitive statement> <while statement> I 
<repeat statement> | <for statement> 

9.2.3.1, 

<while statement> : s = while <expression> dO. <statement> 

The expression controlling repetition must be of type Boolean. 
The statement is repeatedly executed until the expression 
becomes false. If its value is false at the beginning, the 
statement is not executed at all. The while statement 

JttJlilfi B da S 

is equivalent to 

If B iJaaa 
dsflin B; 

while B jdfl. S 

£ml 
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Examples : 

while a[i] ox^IqI :*i+1 

while i>0 do 

-begin if! odd (i) then z z*x; 
i := i 2; 
X : « sqr (x ) 

^Jiilfi naL eof (f) sla 
ia£flln P (ft ); get (f) 
&asl. 

9.2.3.2, R£CLaa.t.,£i:a.tements 

<repeat statement> 
reo eat <statement> { ;<statement>} u ntil <expression> 

The expression controlling repetition must be of type Boolean. 
The sequence of statements between the symbols reo eat and until 
is repeatedly executed (and at least once) until the expression 
becomes true. The repeat statement 

njBiiaaJL s until b 

is equivalent to 

begin S ; 
if not B t hen 

c.speat B until B 
nnt 

Examples : 

r eo eat k : = i mod j 

i := j ; 
j := k 

until 3 = 0 

jisofiat P{ft): get(f) 
until eof(f) 

9.2.3.3 

The for statement indicates that a statement is to be repeatedly 
executed while a progression of values is assigned to a variable 
which is called the control variable of the for statement. 
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<for statement> 
for <control variable> := <for list> <statement> 

<for list> <initial value> in <final value> | 
<initial value> downto <final value> 

<control variable> ::« <identifier> 
<initial \/alue> <expression> 
<final value> <expressiGn> 

The control variable, the initial value, and the final value 
must be of the same scalar type (or subrange thereof), and must 
not be altered by the repeated statement. They cannot be of type 
real . 

A for statement of the form 

for V : = e 1 ifl. e 2 xlfl. S 

is equivalent to the sequence of statements 

V :=e1; S;v :=succ(v); S: ... ;v :=e2; S 

and a for statement of the form 

for V : = e 1 downto e2 S 

is equivalent to the statement 

V := eV; S;v :=pred(S); S; ... ; v := e2; S 

Examples : 

Lor. i 2 in 63 dfl. i£ a[i] > max then max := a[i] 

Lqxl i 5= 1 lil n du 
fan j := 1 fa n jia 
heoin x := 0 ; 

for k : * 1 fa n fa x := x+A[i,kl-*‘0[k,j1; 
C[i,jl := X 

S.dA 

for c := red fa blue fa Q (c ) 

<with statement> with <record variable list> fa <statement> 
<record variable list> <record variable>{ ,<record variable>} 

Within the component statement of the with statement, the 
components (fields) of the record variable specified by the with 
clause can be denoted by their field identifier only, i.e. 
without preceding them with the denotation of the entire record 
variable. The with clause effectively opens the scope 
containing the field identifiers of the specified record 
variable, so that the field identifiers may occur as variable 
identifiers . 

i 
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Example : 

date da 
LL month =* 12 then 

begin month := 1; year year + 1 

£ail 
else month := month+1 

is equivalent to 

iX date.mdnth « 12 then 
begin date .month 1; date .year ;* date.year + 1 

else date .month ;= date.month + 1 

No assignments may be made in the qualified statement to any 
elements of the record variable list. However, assignments are 
possible to the components of these variables. 

10. Procedure declarations 

Procedure declarations serve to define parts of programs and to 
associate identifiers with them so that they can be activated by 
procedure statements . 

<procedure declaration> <procedure heading> <block> 
<block> <label declaration part> 

<constant definition partxtype definition part> 
<variable declaration part> 
<procedure and function declaration part> 
<statement part> 

The procedure heading specifies the identifier naming the 
procedure and the formal parameter identifiers (if any). 
The parameters are either value-, variable-, procedure-, or 
function parameters (cf. also 9.1.2,), Procedures and functions 
which are used as parameters to other procedures and functions 
must have value parameters only . 

<procedure heading> procedure <identifier> ; | 
procedure <identifier> (<formal parameter section> 

{;<formal parameter section>)) ; 

<formal parameter section> 
<parameter group> | 
v^ar <parameter group> 

<parameter group> I 
<identifier> { ,<identifier>} 

<parameter group> <identifier>{,<identifier>}: 
<type identifier> 

A parameter group without preceding specifier implies that its 
constituents are value parameters . 

The label declaration part specifies all labels which mark a 
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statement in the statement part• 

<label declaration part> <empty> | 
label <label> {,<label>} ; 

The nonstant definition part contains all constant synonym 
definitions local to the procedure. 

<constant definition part> <empty> I 
const <constant definition> { ;<constant definition>} ; 

The type rief-i nl tinn part contains all type definitions which are 
local to the procedure declaration, 

<type definition part> :<empty> | 
type <type definition> { ;<type definition> } ; 

The yariable declaration part contains all variable declarations 
local to the procedure declaration, 

<variable declaration part> <empty> I 
var <variable declaration> {;<variable declaration>} ; 

The orocedurB and function declaration aani contains all 
procedure and function declarations local to the procedure 
declaration , 

<procedure and function declaration part> 
{<procedure or function declaration> ;} 

<procedure or function declaration> 
<procedure declaration> | <function declaration> 

The statement part specifies the algorithmic actions to be 
executed upon an activation of the procedure by a procedure 
statement , 

<statement part> :!= <compound statement> 

All identifiers introduced in the formal parameter part, the 
constant definition part, the type definition part, the 
variable-, procedure or function declaration parts are local to 
the procedure declaration which is called the of these 
identifiers. They are not known outside their scope. In the case 
of local variables, their values are undefined at the beginning 
of the statement part , 

The use of the procedure identifier in a procedure statement 
within its declaration implies recursive execution of the 
procedure . 
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Examples of procedure declarations : 

procedure readinteger fvar f: text: var x: integer) : 
yar i , j : integer : 
hfiflin while ft = ' * ilfl get(f); i :« 0; 

wiillfi ft In ['O'..*9'] sia 
kfiflin j !- ord(ft)- ord('O'); 

i :« 10*i + j; 
get(f ) 

nmi: 
X :» i 

and 

Bisect(function f; real; a,b: 
\/ar m : real ; 
begin {assume f (a) < 0 and f(b) > 0 ) 

while abs(a-b) > lE-10*abs(a) do 
begin m := (a+b)/2.0; 

4f f (m) < 0 then a :« m else b 

nnd: 
z : = m 

and 

real; 

: »m 

iian 2 J real); 

procedure GCD (m .n : integer; var x .y ,z : integer); 
i^ax:a1.a2. b 1 .b2.c ,d .q .r : integer; {m>«0, n>0l 
begin {Greatest Common Divisor x of m and n. 

Extended Euclid's Algorithm} 
a1 0; a2 :« 1; b1 !“1; b2 :« 0; 
c ;« m ; d :« n ; 
while d <> 0 do 
begin {a1*m + b1*n « d, a2*m + b2*n « c, 

gcd (c ,d ) « gcd (m .n )} 
q : = c d; r : ■ c mnd cl ; 
a2 :» a2 -q*a1; b2 :■ b2 -q*b1; 
c : * d ; d : * r ; 
r :* a1; a1 :* a2; a2 :« r; 
r :« b1; b1 :« b2; b2 :« r 

nnd; 
X :« c; y :«a2; z;« b2 
{ X « gcd (m .n) » y *m + z *n } 

and 

10.1. 
standard procedures are supposed to be predeclared in every 
implementation of Pascal. Any implementation may feature 
additional predeclared procedures. Since they are, as all 
standard quantities , assumed as declared in a scope surrounding 
the program, no conflict arises from a declaration redefining 
the same identifier within the program. The standard procedures 
are listed and explained below. 
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10.1.1. File handling_DrQceduraA 

put (f ) 

get(f) 

reset(f) 

appends the value of the buffer variable ft to the 
file f. The effect is defined only if prior to 
execution the predicate eof(f) is true, eof(f) 
remains true, and the value of ft becomes undefined. 

advances the current file position (read/write head) 
to the next component, and assigns the value of this 
component to the buffer variable ft . If no next 
component exists, then eof(f) becomes true, and the 
value of ft is not defined. The effect of get(f) is 
defined only if eof(f) ■ false prior to its 
execution, (see 11.1.2) 

resets the current file position to its beginning ! 
and assigns to the buffer variable ft the value of | 
the first element of f. eof(f) becomes false, if f f 
is not empty; otherwise ft is not defined, and j 
eof(f) remains true. ! 

rewrite(f) discards the current value of f such that a new file 
may be generated, eof(f) becomes true. 

Concerning the procedures read, write, readln , writeln, and page 
see chapter 12. 

10.1.2. gynamic-allQcatiQn prQce.d.urs.s 

new (p ) allocates a new variable v and assigns the pointer 
to V to the pointer variable p. If the type of v is 
a record type with variants, the form 

new (p ,t 1, . . . ,tn ) can be used to allocate a variable of the 
variant with tag field values t1,..,,tn. The tag 
field values must be listed contiguously and in the 
order of their declaration and must not be changed 
during execution. 

dispose (p) indicates that storage occupied by the variable pT 
is no longer needed. If the second form of new was 
used to allocate the variable then 

dispose(p , t 1,. . . , tn ) with iden tical tag field values must be 
used to indicate that storage occupied by this 
variant is no longer needed. 

10.1.3. 

Let the variables a and z be declared by 

a: array [m..n] T 
z: Dacked array [u..v] T 

where n-m >« v-u . Then the statement pack(a,i,z) means 

£xill j ;« u V dn z[j] :« a[j-u+i] 

and the statement unpack (z ,a ,i ) means 
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fflC j 5“ u Ifl V ^ a[j-u+i] :» z[j] 

where j denotes an auxiliary variable not occurring elsewhere in 
the program. 

11. Function declarations 

Function declarations serve to define parts of the program which 
compute a scalar value or a pointer value. Functions are 
activated by the evaluation of a function designator (cf. 8.2) 
which is a constituent of an expression. 

<function declaration> <function headingxblock> 

The function heading specifies the identifier naming the 
function, the formal parameters of the function, and the type of 
the function . 

<function heading> function <identifier>:<result type>; | 
function <identifier> (<formal parameter section> 
{ ;<formal parameter section>} ) : <result type> ; 

<result type> <type identifier> 

The type of the function must be a scalar, subrange, or pointer 
type. Within the function declaration there must be at least one 
assignment statement assigning a value to the function 
identifier . This assignment determines the result of the 
function. Occurrence of the function identifier in a function 
designator within its declaration implies recursive execution of 
the function . 

Examples : 

Sqrt (x : real): real; 
^an X 0.x 1: real; 
begin x1 := x; {x>1. Newton^s method} 

repeat xO :=x1; x1 :« (x0+x/x0)*0, 
until abs(xl-xO) < eps*x1 ; 
Sqrt := X 0 

anil 

X : 

Max (a : 
real; i: 

vector ; n 
integer ; 

begin x : = a [ 1] ; 
for i :* 2 ia n dfi 
begin {x = max(a[1]. 

if X < a[i] then 

integer ): real; 

..,a[i-.1] )} 
X : « a [ i] 

S.DJ1 : 
{ X = max (a [ 1].a [ n] )} 
Max := X 

anil 
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tuaflin 1£ 
sjoA 

GCD (m ,n; integer ) : integer ; 
n=0 then GCD :« m else GCD GCD (n ,m mod n) 

Power (x : real ; y : 
var w ,z : real; i: integer; 
begin w :=x;2 :* 1; i :* 

while i > 0 
begin {2*(w**i) « x ** 

jL£ odd (i ) then z ; * 
i :» i div/ 2; 
w : » sqr (w ) 

£nd.; 
{ z * X **y } 
Power := z 

integer ): 

y; 

y} 
z *w ; 

SJCLSi 

real {y >» 0) 

11.1. 

Standard functions are supposed to be predeclared 
implementation of Pascal . Any implementation may 
additional predeclared functions (cf. also 10.1), 

in every 
feature 

The standard functions are listed and explained below: 

11.1.1 

abs (x ) 

sqr (x ) 

computes the absolute value of x. The type of x 
must be either real or integer . and the type of 
the result is the type of x . 

computes x**2. The type of x must be either real 
or integer . and the type of the result is the type 
of X . 

sin (x ) 
cos (x ) 
exp (x ) 
In (x ) 
sqrt (x ) 
arctan(x) 

the type of x must be either caal or integer . and 
the type of the result is real . 

11.1.2. 
odd(x ) the type of x must be integer . and the result is 

true, if X is odd, and false otherwise. 

I 

i 

eof(f) eof(f) indicates, whether the file f is in the 
end-of-file status. 

eoln(f ) indicates the end of a line in a textfile (see 
chapter 12) , 

k 

I 
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11.1.3. 

trunc (x ) 

round(x ) 

ord (x ) 

chr (x ) 

the real value x 
part . 

the real argument 
integer . 

is truncated to its integral 

X is rounded to the nearest 

X must be of a scalar type (including Boolean and 
char), and the result (of type integer) is the 
ordinal number of the value x in the set defined 
by t he type of x. 

X must be of type integer, and the result (of type 
char) is the character whose ordinal number is x 
(if it exists ) . 

11.1.4. 

succ(x ) 

pred(x) 

X is of any sea lar or subrange type , and t he 
result is the succe ssor valu e of X ( if it exists ). 

X is of any sea lar or subrange type , and t he 
result is t he pr edecessor value of X (if it 
exists ). 

12, Input and output 

The basis of legible input and output are textfiles (cf.6.2,4) 
that are passed as program parameters (cf. 13) to a PASCAL 
program and in its environment represent some input or output 
device such as a terminal, a card reader, or a line printer. In 
order to facilitate the handling of textfiles, the four standard 
procedures read . write . readln . and writ eln are introduced in 
addition to the procedures oet and J3Jji • The textfiles these 
standard procedures apply to must not necessarily represent 
input/output devices, but can also be local files. The new 
procedures are used with a non-standard syntax for their 
parameter lists, allowing, among other things, for a variable 
number of parameters. Moreover, the parameters must not 
necessarily be of type char, but may also be of certain other 
types , in which case the data transfer is accompanied by an 
implicit data conversion operation. If the first parameter is a 
file variable, then this is the file to be read or written. 
Otherwise, the standard files input and output are automatically 
assumed as default values in the cases cf reading and writing 
respectively . These two files are predeclared as 

var input , output : text 

Textfiles represent a special case among file types insofar as 
texts are substructured into lines by so-called line markers 
(cf. 6,2,4.). If, upon reading a textfile f, the file position 
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is adv/anced to a line marker , that is past the last character of 
a line. then the value of the buffer variable ft becomes a 
blank, and the standard function eoln (fl (£nd Sif lijie) yields 
the value true. Advancing the file position once more assigns to 
ff the first character of the next line, and eoln(f) yields 
false (unless the next line consists of 0 characters). Line 
markers, not being elements of type char, can only be generated 

by the procedure writeln ■ 

12.1. Ihs .flCflCLed^re xaad 

The following rules hold for the procedure nead ; f denotes a 
textfile and v1...vn denote variables of the types char, integer 

(or subrange of integer), or real. 

1. read(v1,...,vn) is equivalent to read(input ,v 1,... ,vn ) 

2. read (f ,v 1, . . . ,vn ) is equivalent to read(f,v1); ... ; 

read (f ,vn ) 

3. if V is a variable of type ghar . then read(f.v) is equivalent | 

to V :» ft : get (f ) | 
) 

4. if V is a variable of type integer (or subrange of integer) j 
or real, then read(f,v) implies the reading from f of a j 
sequence of characters which form a number according to the [ 
syntax of PASCAL (cf. 4.) and the assignment of that number j 
to V . Preceding blanks and line markers are skipped. 

The procedure read can also be used to read from a file f which 
is not a textfile. read(f,x) is in this case equivalent to 

X : = f T ; ge t (f ). 

  

1. readln(v1.vn) is equivalent to readln(input .v 1,... .vn ) 

2. readln(f,v1.vn) is equivalent to 

read(f,v1.vn); readln(f) 

3. readln(f) is equivalent to 

while not eoln(f) ilfl get(f); 
get (f ) 

Readln is used to read and subsequently skip to the beginning ' 

of the next line. 

12.3. The procedure writs 

The following rules hold for the procedure ; f denotes a 
textfile, pi.pn denote so-called write-parameters , e denotes 
an expression, m and n denote expressions of type integer. 

1. write(p 1.pn) is equivalent to write(output ,p 1.pn) 
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2. write(f ,p 1. . , , ,pn) is equivalent to 

write(f,p1); ... ; write(f.pn) 

3. The write-parameters p have the following forms: 

e :m e :m :n e 

e represents the value to be **written** on the file f. and m 
and n are so-called field width parameters. If the value e. 
which is either a number, a character, a Boolean value, or a 
string requires less than m characters for its 
representation, then an adequate number of blanks is issued 
such that exactly m characters are written. If m is omitteo. 
an implementation-defined default value will be assumed. The 
form with the width parameter n is applicable only if e is of 
type real (see rule 6). 

4. If e is of type char . then 

write(f, e:m) is equivalent to 
ft :« * put (f) ; (repeated m-1 times) 
f t : ■ e ; put (f ) 

KqI.3. • the default value for m is in this case 1. 

5. If e is of type Integer (or a subrange of integer), then the 
decimal representation of the number e will be written on the 
file f, preceded by an appropriate number of blanks as 
specified by m. 

6. If e is of type real , a decimal representation of the number 
e is written on the file f. preceded by an appropriate number 
of blanks as specified by m. If the parameter n is missing 
(see rule 3). a floating-point representation consisting of a 
coefficient and a scale factor will be chosen. Otherwise a 
fixed-point representation with n digits after the decimal 
point is obtained. 

7- If e is of type Boolean , then the words TRUE or FALSE are 
written on the file f. preceded by an appropriate number of 
blanks as specified by m. 

B. If e is an (packed) array of characters, then the string e is 
written on the file f» preceded by an appropriate number of 
blanks as specified by m. 

The procedure write can also be used to write onto a file f 
which is not a textfile. write(f»x) is in this case equivalent 
to fT :« x; put(f). 

1. writeln (p 1, . . .,pn) is equivalent to writeln(output,p1.... ,p n) 

2. wr iteln (f ,p 1, . . . ,pn ) is equivalent to write(f.p1.pn); 
writeln(f ) 

3. writeln(f) appends a line marker (cf.6.2.4) to the file f. 
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12.3. Additional procedurea. 

pa0e(f) causes skipping to the top of a new page, when the 
textfile f is printed. 

13. Programs 

A Pascal program has the form of a procedure declaration except 

for its heading. 

<program> <program heading> <block> . 

<program heading> 
orooram <identifier> (<program parameters>) ; 

<program parameters> <identifier> { , <identifier> } 

The identifier following the symbol orooram is the program name; 
it has no further significance inside the program. The program 
parameters denote entities that exist outside the program, and 
through which the program communicates with its environment . 
These entities (usually files) are called . and must be 
declared in the block which constitutes the program like 

ordinary local variables . 
The two standard files input and output must not be declared 
(cf. 12), but have to be listed as parameters in the program 
heading, if they are used. The initialising statements 
reset(input) and rewrite(output ) are automatically generated and 
must not be specified by the programmer. 

Examples: 

program copy(f,g); 
f.9 5 file oL real; 

begin reset (f); rewrite (g); 
while not eof (f ) ilfl, 

begin gt ;« ft ; put(g); get (f) 
pnd 

jBLnii • 

program copytext(input,output); 
ch : char ; 

ksflln 
while not eof (input) jda 
begin 

while not eoln (input) ila 
begin read(ch ) ; write(ch) 
end ; 

readln; writeln 

s.asi 
£J1£L . 
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A standard for implementation and program interchange 

A primary motivation for the development of PASCAL was the need 
for a powerful and flexible language that could be reasonably 
efficiently implemented on most computers . Its features were to 
be defined without reference to any particular machine in order 
to facilitate the interchange of programs. The following set of 
proposed restrictions is designed as a guideline for 
implementors and for programmers who anticipate that their 
programs be used on different computers . The purpose of these 
standards is to increase the likelihood that different 
implementations will be compatible, and that programs are 
transferable from one installation to another. 

1. Identifiers denoting distinct objects must differ over their 
first 8 characters . 

2. Labels consist of at most 4 digits. 

3. The implementor may set a limit to the size of a base type 
over which a set can be defined. (Consequently, a bit pattern 
representation may reasonably be used for sets.) 

character on each line of printfiles may be 
as a printer control character with the following 

: single spacing 
: double spacing 
! print on top of next page 
: no line feed (overprinting) 

Representations of PASCAL in terms of available character sets 
should obey the following rules : 

5. Word symbols - such as beoin , end. etc. - are written as a 
sequence of letters (without surrounding escape characters). 
They may not be used as identifiers. 

6. Blanks , ends of lines , and comments are considered as 
separators. An arbitrary number of separators may occur 
between any two consecutive PASCAL symbols with the following 
restriction: no separators must occur within identifiers, 
numbers , and word symbols . 

7. At least one separator must occur between any pair of 
consecutive identifiers, numbers, or word symbols . 

4. The first 
interpreted 
meanings : 

blank 
'0' 

•r 
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15. Index 

actual parameter 
adding operator 
array type 
array variable 
assignment statement 
base type 
block 
case label 
case label list 
case list element 
case statement 
component type 
component variable 
compound statement 
conditional statement 
constant 
constant definition 
constant definition part 
constant identifier 
control variable 
digit 
digit sequence 
element 
element list 
empty statement 
entire variable 
expression 
factor 
field designator 
field identifier 
field list 
file buffer 
file type 
file variable 
final value 
fixed part 
for list 
for statement 

formal parameter section 
function declaration 
function designator 
function heading 
function identifier 
goto statement 
identifier 
if statement 
index type 
indexed variable 
initial value 
label 
label declaration part 
letter 
letter or digit 
multiplying operator 

9.1.2 
B.1 .3 
6.2.1 
7.2.1 
9.1.1 
6.2.3 
10. 
6.2.2 
9.2.2.2 and 6.2.2 
9.2.2.2 
9.2.2.2 
6.2.1 
7.2 
9.2.1 
9.2.2 
5. 
5. 
10. 
5. 
9.2.3.3 
3. 
4. 
8. 
8. 
9.1 
7.1 
8. 
8. 
7.2.2 
7.2.2 
6.2.2 
7.2.3 
6.2.4 
7.2.3 
9.2.3.3 
6.2.2 
9.2.3.3 
9.2.3.3 
10. 
11. 
8.2 
11 . 
8.2 
9.1.3 
4. 
9.2.2.1 
6.2.1 
7.2.1 
9.2.3.3 
9. 
10. 
3. 
4. 
8.1.2 
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parameter group 10. 
pointer type 6.3 
pointer variable 7.3 
procedure and function 

declaration part 10. 
procedure declaration 10. 
procedure heading 10. 
procedure identifier 9.1.2 
procedure or function declaration 10. 
procedure statement 9.1.2 
program 13. 
program heading 13. 
program parameters 13. 
record section 6.2.2 
record type 6.2.2 
record variable 7.2.2 
record variable list 9.2.4 
referenced variable 7.3 
relational operator 8.1.4 
repeat statement 9.2.3.2 
repetitive statement 9.2.3 
resul t type 11. 
scalar type 6.1.1 
scale factor 4. 
se t 8. 
set type 6.2.3 
sign 4. 
simple expression 8. 
simple statement 9. 1 
simple type 6. 1 
special symbol 3. 
sta temen t 9. 
statement part 10. 
string 4. 
structured statement 9.2 
structured type 6.2 
subrange type 6.1.3 
tag field 6.2.2 
term 8. 
type 6. 
type definition 6. 
type definition part 10. 
type identifier 6. 1 
unlabelled statement 9. 
unpacked structured type 6.2 
unsigned constant 8. 
unsigned integer 4. 
unsigned number 4. 
unsigned real 4. 
variable 7. 
\«riable declaration 7. 
variable declaration part 10. 
x^riable identifier 7. 1 
va rian t 6. 2.2 
variant part 6.2.2 
while statement 9.2.3.1 
with statement 

• 
9.2.4 

0 
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MICROCOMPUTER 
Problem Solving Using PASCAL 

By K. L. Bowles 

1977. X, 563p. paper 

This text introduces problem solving and structured programmiijg using ^e PASCAL 
language, extended with buiit-in functions for graphics^ Designed for a one-quarter/ 
semester curriculum at the sophomore/junior level, this book serVes a dual purposq;to 
teach students an organized approach to solving problems, and to introduce them totrte 
computer and its applications, which may be of use iater in their chosen professilns. 

Severai features make this text suitable for both science and'^n-science majors: 

• no mathematics is required beyond simple high school Algebra; algebraic examples 
are Introduced near the middle of the book In order to reduce the mathematics 
threat often felt by students 

• algorithms are illustrated with hierarchic structure diagrams, tether than flow charts, 
to emphasize the concepts of structured programs 

• the GOTO statement is used only fleetingly near the end of the course In connection 
with methods students might use to employ structured programming in other cqfnput- 
er languages f 

• science oriented students will find all of the programming methods taught in conven¬ 
tional courses in this text. 

The Design of Well-Structured and Correct Programs 

By S. Alagic and M. A. Arbib 

1978. approx. 260p. approx. 68 illus. cloth 
(Texts and Monographs In Computer Science) 

Ten years of research are synthesized In this undergraduate text. Using the PASCAL 
language, both the techniques of top-down program design and verification of program 
correctness are presented. Many examples of program and proof development as well 
as an explanation of control and data structures are provided. As a PASCAL program¬ 
ming text, it gives not only advanced algorithms, which operate on advanced data struc¬ 
tures, but also the full axiomatic definition of PASCAL. 



^ Concurrent Pascal Compiler 
; Minicomputers / > 

By A C. Hartmann 
* ' 1'^ 

197'e V, 119p. paper 
(LeJiuie in Computer j< ence, V. 50) 

■V.'W' i ' 
The author desc iLesl^' iseveJ'-pass compiler for the Concurrent Pascal programming 
.'^'^,dage. Concur'■•ifitVascal is an abstract programming ianguage for computer operat- 
ji^^ystems. The 'r'anguage extends sequential Pascal with the monitor concepts for 
strumired concui 'ent progminming. Compiiation of Concurrent Pascal on a minicom¬ 
puter is dor 3 by dividirAktl-'. "nmpiler into seven sequentiai passes. The passes, written 
in sequentir'.Paocai, *ferat6 virtuai codes that can be interpreted on any 16-bit mini¬ 
computer. ^ jJ* "j 

Basic terms are defined the pass breakdown is described, each pass is described, the 
virtuai machine is define,!, and the impiementation is discussed. Many of the compilation 
techniques used here^arfe weil-known, but, taken as a whoie, this compiier is an engineer¬ 
ing oroduct that may serve as a prototype for industriai compiler writers. For this reason, 
th‘'i‘ascription of the compiier is reiativeiy seif-contained. 

COj),*nts: 

Introduction. -Definitions. -Pass Structure. -Lexicai Analysis. -Syntax Anaiysis. -Name 
Analy*^ . -Declaration Analysis. -Body Anaiysis. -Code Selection. -Code Assembly. 
-Interpass Topics. -The Virtual Machine. -Implementation. -References. -Appendix: Syn¬ 
tax Graphs. 
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USER MANUALAND REPORT 

Springer-Verlag publishes three series in Computer Science: 

■ Texts and Monographs in Computer Science 
■ Lecture Notes in Computer Science 
■ Sammiung Informatik (intheHeidelbergerTaschenbucher). 

Texts and Monographs in Computer Science begins with a thoroughly revised 
edition of Gschwind/McCluskey, Design of Digital Computers to be followed 
by a new printing of Randell, The Origins of Digital Computers. This series wiil 
include texts at both the undergraduate and graduate levels as well as 
monographs of interest to researchers in computer science. 

Lecture Notes in Computer Science reports current developments in 
computer science research and teaching—quickly, informally, and effectively. 
This series is an appropriate vehicle for the publication of technical reports 
that are otherwise not efficiently distributed. Reports on the state of the art of 
specific areas, such as the summer schools on software engineering (Vol. 30) 
or compiler construction (Vol. 21), have been particularly successful. 

Sammiung Informatik is a collection of German textbooks designed to 
cover the standard curriculum at German universities. Its content and frame¬ 
work are best represented by the two introductory volumes, Informatik I and 
Informatik II by Bauer and Goos. 

ISBN 0-387-90144-2 SPRINGER-VERLAG 
ISBN 3-540-90144-2 SPRINGER-VERLAG 


